定義在R上的函數(shù)f(x),恒有|f(-x)|=|f(x)|,則函數(shù)f(x)為( 。
A、奇函數(shù)
B、偶函數(shù)
C、奇函數(shù)或偶函數(shù)
D、可能既不是奇函數(shù),也不是偶函數(shù)
考點(diǎn):函數(shù)奇偶性的判斷
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件,得到f(-x)=±f(x),然后根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.
解答: 解:若|f(-x)|=|f(x)|,
則f(-x)=±f(x),
若f(-x)=f(x),則f(x)是偶函數(shù),
若f(-x)=-f(x),則f(x)是奇函數(shù),
故選:C.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的判斷,根據(jù)絕對(duì)值的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意x0<a,都滿足x02-2x0-3>0,則a的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若-1<a3<1,0<a6<3,則S9的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,3]上有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(0,
1
e
B、(
ln3
3
,e)
C、(0,
ln3
3
]
D、[
ln3
3
,
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,從下列五個(gè)點(diǎn):A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三個(gè),這三點(diǎn)能構(gòu)成三角形的概率是( 。
A、
2
5
B、
3
5
C、
4
5
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(3,4)和圓C:(x-2)2+y2=4,A,B是圓C上兩個(gè)動(dòng)點(diǎn),且|AB|=2
3
,則
OP
•(
OA
+
OB
)(O為坐標(biāo)原點(diǎn))的取值范圍是( 。
A、[3,9]
B、[1,11]
C、[6,18]
D、[2,22]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足下列條件:
①首項(xiàng)a1=a,(a>3,a∈N*);
②當(dāng)an=3k,(k∈N*)時(shí),an+1=
an
3
;
③當(dāng)an≠3k,(k∈N*)時(shí),an+1=an+1.
(Ⅰ)當(dāng)a4=1,求首項(xiàng)a之值;
(Ⅱ)當(dāng)a=2014時(shí),求a2014;
(Ⅲ)試證:正整數(shù)3必為數(shù)列{an}中的某一項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=-
1
3
,0<α<180°.
(1)求sinαcosα的值;
(2)求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一圓的圓心P在直線y=x上,且該圓與直線x+2y-1=0相切,截y軸所得弦長(zhǎng)為2,求此圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案