設(shè)集合,.
⑴求的值;
⑵判斷函數(shù)的單調(diào)性,并用定義加以證明.

(1);(2)函數(shù)上單調(diào)遞增,證明見(jiàn)解析.

解析試題分析:(1)由集合,所以有;求出、的值,最后把的值代入集合、中,驗(yàn)證是否滿(mǎn)足集合的互異性;(2)根據(jù)函數(shù)單調(diào)性的定義即可得到函數(shù)的單調(diào)性.
試題解析:(1)集合

解得,
此時(shí),,

(2)由(1)知,上單調(diào)遞增.
任取
=
=

所以:,即
所以上單調(diào)遞增.
考點(diǎn):1.集合的互異性;2.集合的定義;3.函數(shù)單調(diào)性的證明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=,x∈[1,3],
(1)求f(x)的最大值與最小值;
(2)若于任意的x∈[1,3],t∈[0,2]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義在上的函數(shù)當(dāng)時(shí),,且對(duì)任意的
(1)求證:,
(2)求證:對(duì)任意的,恒有;
(3)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)用定義證明上單調(diào)遞增;
(2)若上的奇函數(shù),求的值;
(3)若的值域?yàn)镈,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)求的值;
(Ⅱ)判斷并證明函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義域?yàn)镽的函數(shù)是奇函數(shù).
(1)求,的值;
(2)證明函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為實(shí)常數(shù)).
(1)當(dāng)時(shí),證明:
不是奇函數(shù);②上的單調(diào)遞減函數(shù).
(2)設(shè)是奇函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知偶函數(shù)滿(mǎn)足:當(dāng)時(shí),,當(dāng)時(shí),.
(Ⅰ).求表達(dá)式;
(Ⅱ).若直線(xiàn)與函數(shù)的圖像恰有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ).試討論當(dāng)實(shí)數(shù)滿(mǎn)足什么條件時(shí),直線(xiàn)的圖像恰有個(gè)公共點(diǎn),且這個(gè)公共點(diǎn)均勻分布在直線(xiàn)上.(不要求過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

是定義在上的減函數(shù),滿(mǎn)足.
(1)求證:;
(2)若,解不等式.

查看答案和解析>>

同步練習(xí)冊(cè)答案