【題目】《九章算術(shù)》的盈不足章第19個問題中提到:“今有良馬與駑馬發(fā)長安,至齊.齊去長安三千里.良馬初日行一百九十三里,日增一十三里.駑馬初日行九十七里,日減半里…”其大意為:“現(xiàn)在有良馬和駑馬同時從長安出發(fā)到齊去.已知長安和齊的距離是3000里.良馬第一天行193里,之后每天比前一天多行13里.駑馬第一天行97里,之后每天比前一天少行0.5里…”試問前4天,良馬和駑馬共走過的路程之和的里數(shù)為(   )

A.1235B.1800C.2600D.3000

【答案】A

【解析】

根據(jù)題意良馬每天路程構(gòu)成以為首項,為公差的等差數(shù)列,駑馬每天路程構(gòu)成以為首項,為公差的等差數(shù)列,故利用等差數(shù)列的求和公式可直接求得結(jié)果.

因為長安和齊的距離是3000里.良馬第一天行193里,之后每天比前一天多行13里.

駑馬第一天行97里,之后每天比前一天少行0.5里,

所以前4天,良馬和駑馬共走過的路程之和的里數(shù)為:

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在橢圓上,為右焦點,軸,為橢圓上的四個動點,且,交于原點.

1)判斷直線與橢圓的位置關(guān)系;

2設(shè)滿足,判斷的值是否為定值,若是,請求出此定值,并求出四邊形面積的最大值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,橢圓的極坐標方程為.

1)求直線的普通方程(寫成一般式)和橢圓的直角坐標方程(寫成標準方程);

2)若直線與橢圓相交于,兩點,且與軸相交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為

1)求曲線C的普通方程;

2)直線l的參數(shù)方程為,(t為參數(shù)),直線lx軸交于點F,與曲線C的交點為AB,當取最小值時,求直線l的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,,平面平面,二面角.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).

(1)求實數(shù)的值;

(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)

為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在梯形ABCD中,ADBC,ABBC2,EAD的中點,OACBE的交點,將△ABE沿BE翻折到圖2中△A1BE的位置得到四棱錐A1BCDE

1)求證:CDA1C;

2)若A1CBE2,求點C到平面A1ED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:(常數(shù)),.數(shù)列滿足:.

1)求的值;

2)求出數(shù)列的通項公式;

3)問:數(shù)列的每一項能否均為整數(shù)?若能,求出k的所有可能值;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個結(jié)論,其中正確的是( )

①從勻速傳送的生產(chǎn)流水線上,每30分鐘抽取一件產(chǎn)品進行檢測,這樣的抽樣是分層抽樣;②“”成立的必要而不充分條件是“”;③若樣本數(shù)據(jù),…,的標準差為3,則,,…,的方差為145;④,是向量,則由“”類比得到“”的結(jié)論是正確的.

A.①④B.②③C.①③D.②④

查看答案和解析>>

同步練習(xí)冊答案