【題目】已知數(shù)列滿足:(常數(shù)),.數(shù)列滿足:.
(1)求的值;
(2)求出數(shù)列的通項公式;
(3)問:數(shù)列的每一項能否均為整數(shù)?若能,求出k的所有可能值;若不能,請說明理由.
【答案】(1) ;(2) ; (3) k為1,2時數(shù)列是整數(shù)列.
【解析】
(1)經(jīng)過計算可知:,由數(shù)列滿足:(n=1,2,3,4…),從而可求;
(2)由條件可知.得,兩式相減整理得,從而可求數(shù)列的通項公式;
(3)假設(shè)存在正數(shù)k,使得數(shù)列的每一項均為整數(shù),則由(2)可知:
,由,,可求得.證明時,滿足題意,說明時,數(shù)列是整數(shù)列.
(1)由已知可知:,
把數(shù)列的項代入
求得;
(2)由
可知:①
則:②
①②有:,
即:
…,…,
;
(3)假設(shè)存在正數(shù)k使得數(shù)列的每一項均為整數(shù),
則由(2)可知:③,
由,,可知,2.
當(dāng)時,為整數(shù),利用結(jié)合③式可知的每一項均為整數(shù);
當(dāng)時,③變?yōu)?/span>④
用數(shù)學(xué)歸納法證明為偶數(shù),為整數(shù).
時結(jié)論顯然成立,假設(shè)時結(jié)論成立,
這時為偶數(shù),為整數(shù),
故為偶數(shù),為整數(shù),
時,命題成立.
故數(shù)列是整數(shù)列.
綜上所述k為1,2時數(shù)列是整數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信紅包是一款可以實現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機應(yīng)用.某網(wǎng)絡(luò)運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下?lián)尩降募t包個數(shù)進行統(tǒng)計,得到如表數(shù)據(jù):
手機品牌型號 | |||||
甲品牌(個 | 4 | 3 | 8 | 6 | 12 |
乙品牌(個 | 5 | 7 | 9 | 4 | 3 |
手機品牌紅包個數(shù) | 優(yōu) | 非優(yōu) | 合計 |
乙品牌(個 | |||
合計 |
(1)如果搶到紅包個數(shù)超過5個的手機型號為“優(yōu)”,否則“非優(yōu)”,請完成上述列聯(lián)表,據(jù)此判斷是否有的把握認為搶到的紅包個數(shù)與手機品牌有關(guān)?
(2)如果不考慮其它因素,要從甲品牌的5種型號中選出3種型號的手機進行大規(guī)模宣傳銷售.以表示選中的手機型號中搶到的紅包超過5個的型號種數(shù),求隨機變量的分布列及數(shù)學(xué)期望.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | <>2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》的盈不足章第19個問題中提到:“今有良馬與駑馬發(fā)長安,至齊.齊去長安三千里.良馬初日行一百九十三里,日增一十三里.駑馬初日行九十七里,日減半里…”其大意為:“現(xiàn)在有良馬和駑馬同時從長安出發(fā)到齊去.已知長安和齊的距離是3000里.良馬第一天行193里,之后每天比前一天多行13里.駑馬第一天行97里,之后每天比前一天少行0.5里…”試問前4天,良馬和駑馬共走過的路程之和的里數(shù)為( )
A.1235B.1800C.2600D.3000
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD–A1B1C1D1中,已知底面ABCD是菱形,點P是側(cè)棱C1C的中點.
(1)求證:AC1∥平面PBD;
(2)求證:BD⊥A1P.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當(dāng)時,求函數(shù)在點處的切線方程;
(Ⅱ)設(shè)函數(shù)的導(dǎo)函數(shù)是,若不等式對于任意的實數(shù)恒成立,求實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)存在兩個極值點,,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某海濱養(yǎng)殖場有一塊可用水城,該養(yǎng)殖場用隔離網(wǎng)把該水域分為兩個部分,其中百米,現(xiàn)計劃過處再修建一條直線型隔離網(wǎng),其端點分別在上,記為
(1)若要使得所圍區(qū)域面積不大于平方百米,求的取值范圍:
(2)若要在區(qū)域內(nèi)養(yǎng)殖魚類甲,區(qū)域內(nèi)養(yǎng)殖魚類乙,已知魚類甲的養(yǎng)殖成本是萬元/平方百米,魚類乙的養(yǎng)殖成本是萬元/平方百米.試確定的值,使得養(yǎng)殖成本最小,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=2py(p>0)的焦點為(0,1)
(1)求拋物線C的方程;
(2)設(shè)直線l2:y=kx+m與拋物線C有唯一公共點P,且與直線l1:y=﹣1相交于點Q,試問,在坐標(biāo)平面內(nèi)是否存在點N,使得以PQ為直徑的圓恒過點N?若存在,求出點N的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國北京世界園藝博覽會于2019年4月29日至10月7日在北京市延慶區(qū)舉行.組委會為方便游客游園,特推出“導(dǎo)引員”服務(wù).“導(dǎo)引員”的日工資方案如下:
方案:由三部分組成
(表一)
底薪 | 150元 |
工作時間 | 6元/小時 |
行走路程 | 11元/公里 |
方案:由兩部分組成:(1)根據(jù)工作時間20元/小時計費;(2)行走路程不超過4公里時,按10元/公里計費;超過4公里時,超出部分按15元/公里計費.已知“導(dǎo)引員”每天上班8小時,由于各種因素,“導(dǎo)引員”每天行走的路程是一個隨機變量.試運行期間,組委會對某天100名“導(dǎo)引員”的行走路程述行了統(tǒng)計,為了計算方便對日行走路程進行取整處理.例如行走1.8公里按1公里計算,行走5.7公里按5公里計算.如表所示:
(表二)
行走路程 (公里) | |||||
人數(shù) | 5 | 10 | 15 | 45 | 25 |
(Ⅰ)分別寫出兩種方案的日工資(單位:元)與日行走路程(單位:公里)的函數(shù)關(guān)系
(Ⅱ)①現(xiàn)按照分層抽樣的方工式從,共抽取5人組成愛心服務(wù)隊,再從這5人中抽取3人當(dāng)小紅帽,求小紅帽中恰有1人來自的概率;
②“導(dǎo)引員”小張因為身體原因每天只能行走12公里,如果僅從日工資的角度考慮,請你幫小張選擇使用哪種方案會使他的日工資更高?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(1)求曲線C和直線的直角坐標(biāo)系方程;
(2)已知直線與曲線C相交于A,B兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com