【題目】已知函數(shù),其中.
(Ⅰ)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)設(shè)函數(shù)的導(dǎo)函數(shù)是,若不等式對(duì)于任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)存在兩個(gè)極值點(diǎn),,且,求實(shí)數(shù)的取值范圍.
【答案】(1);(2);(3)
【解析】
(Ⅰ)當(dāng)時(shí),,(1).,可得(1).利用點(diǎn)斜式即可得出切線(xiàn)方程.
(Ⅱ),.不等式,化為:.令在上恒成立,(1).可得在上恒成立,化為:即可得出.
(Ⅲ)根據(jù)可得和關(guān)于x的函數(shù)表達(dá)式,根據(jù)存在兩個(gè)極值點(diǎn),,可得=0在上有兩個(gè)不等實(shí)數(shù)根,.因此,得出a的取值范圍.并根據(jù),滿(mǎn)足,代入簡(jiǎn)化,利用導(dǎo)數(shù)研究其單調(diào)性即可得出結(jié)果.
解:(Ⅰ)當(dāng)時(shí),,(1).
,(1).
曲線(xiàn)在點(diǎn)(1,)處的切線(xiàn)方程為:,化為:.
(Ⅱ),.
不等式,即,化為:.
令在上恒成立,(1).
在上恒成立,化為:.
的取值范圍是.
(Ⅲ)設(shè)函數(shù),
,.
存在兩個(gè)極值點(diǎn),,
在上有兩個(gè)不等實(shí)數(shù)根,.
因此,且,.
解得.
,,滿(mǎn)足,
.
化為:.
,.
化為:,
令(a),,(1).
,
(a)在上單調(diào)遞增,
.
實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的離心率為,以橢圓的上頂點(diǎn)為圓心作圓,
,圓與橢圓在第一象限交于點(diǎn),在第二象限交于點(diǎn).
(1)求橢圓的方程;
(2)求的最小值,并求出此時(shí)圓的方程;
(3)設(shè)點(diǎn)是橢圓上異于的一點(diǎn),且直線(xiàn)分別與軸交于點(diǎn)為坐標(biāo)原點(diǎn),求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,,,點(diǎn)在線(xiàn)段上,且.
(Ⅰ)求證:;
(Ⅱ)求二面角的正弦值;
(Ⅲ)在線(xiàn)段上是否存在點(diǎn),使得,若存在,求出線(xiàn)段的長(zhǎng),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若對(duì)任意的恒成立,求實(shí)數(shù)的值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,對(duì)任意正整數(shù)n,皆滿(mǎn)足(實(shí)常數(shù)).在等差數(shù)())中,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)試判斷數(shù)列能否成等比數(shù)列,并說(shuō)明理由;
(3)若,,求數(shù)列的前n項(xiàng)和,并計(jì)算:(已知).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小值為,其中.
(1)求的值;
(2)若對(duì)任意的,有成立,求實(shí)數(shù)的范圍;
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的值域;
(3)若,過(guò)原點(diǎn)分別作曲線(xiàn)的切線(xiàn)、,且兩切線(xiàn)的斜率互為倒數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)C和橢圓有公共的焦點(diǎn),且離心率為.
(1)求雙曲線(xiàn)C的方程.
(2)經(jīng)過(guò)點(diǎn)M(2,1)作直線(xiàn)l交雙曲線(xiàn)C于A,B兩點(diǎn),且M為AB的中點(diǎn),求直線(xiàn)l的方程并求弦長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com