在△ABC中,下列表達(dá)式為常數(shù)的是( 。
A、sin(A+B)+sinC
B、cos(B+C)-cosA
C、tan
A+B
2
•tan
C
2
D、cos
B+C
2
•tan
A
2
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:由三角形的內(nèi)角和定理結(jié)合三角函數(shù)的誘導(dǎo)公式逐一分析四個(gè)選項(xiàng)得答案.
解答: 解:在△ABC中,∵A+B+C=π,
∴sin(A+B)+sinC=2sinC,不為常數(shù);
cos(B+C)-cosA=-2cosA,不為常數(shù);
tan
A+B
2
•tan
C
2
=tan(
π
2
-
C
2
)•tan
C
2
=1
,為常數(shù);
cos
B+C
2
•tan
A
2
=cos(
π
2
-
A
2
)•tan
A
2
=sin2
A
2
•cos
A
2
,不為常數(shù).
故選:C.
點(diǎn)評(píng):本題考查了三角函數(shù)的化簡(jiǎn)求值,考查了三角函數(shù)的誘導(dǎo)公式,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的值域,要求畫(huà)圖.
(1)y=
1
x
+2,x∈(1,3]
(2)y=1-3x,x∈R
(3)y=-x2+x-1,x∈[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:sin80°+cos62°+cos82°-sin44°-cos26°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α、β都是銳角,且α+β的終邊與-280°角的終邊相同,α-β的終邊與670°角的終邊相同,求∠α、∠β的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為a1=
1
4
,公比q=
1
4
的等比數(shù)列,設(shè)bn+2=3log
1
4
an(n∈N*),數(shù)列{cn}滿足cn=an•bn
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若cn
1
4
m2+m-1對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3+bx2+cx+d(x∈R)已知F(x)=f(x)-f′(x)是奇函數(shù),且F(1)=-11
(1)求b、c、d的值;
(2)求F(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)球與正六棱柱的各個(gè)面相切,則正六棱柱的側(cè)面積與底面積的比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(Ⅰ) 當(dāng)BE=1,是否在折疊后的AD上存在一點(diǎn)P,使得CP∥平面ABEF?若存在,求出P點(diǎn)位置,若不存在,說(shuō)明理由;
(Ⅱ) 設(shè)BE=x,問(wèn)當(dāng)x為何值時(shí),三棱錐A-CDF的體積有最大值?并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了得到函數(shù)y=31-x的圖象,可以把函數(shù)y=3-x的圖象( 。
A、向左平移3個(gè)單位長(zhǎng)度
B、向右平移3個(gè)單位長(zhǎng)度
C、向左平移1個(gè)單位長(zhǎng)度
D、向右平移1個(gè)單位長(zhǎng)度

查看答案和解析>>

同步練習(xí)冊(cè)答案