【題目】已知命題p:xR,x2﹣x﹣2≥0,那么命題p為( )

A.xR,x2﹣x﹣2≤0

B.xR,x2﹣x﹣2<0

C.xR,x2﹣x﹣2≤0

D.xR,x2﹣x﹣2<0

【答案】D

【解析】

試題分析:根據(jù)特稱命題的否定是全稱命題進(jìn)行判斷即可.

解:命題是特稱命題,則命題的否定是:xR,x2﹣x﹣2<0,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABCD的底面ABCD為直角梯形,其中BAAD,CDAD,CDAD2AB,PA底面ABCDEPC的中點(diǎn)

1求證:BE平面PAD;

2AP2AB,求證:BE平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,分別是棱的中點(diǎn),且平面

1求證:平面;

2求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的

根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值以各組的區(qū)間中點(diǎn)值代表該組的取值;

該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x單位:萬(wàn)元

1

2

3

4

5

銷售收益y單位:萬(wàn)元

2

3

2

7

表中的數(shù)據(jù)顯示,之間存在線性相關(guān)關(guān)系,請(qǐng)將的結(jié)果填入空白欄,并計(jì)算關(guān)于的回歸方程

回歸直線的斜率和截距的最小二乘估計(jì)公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知四邊形為直角梯形,,,,為等邊三角形,,,如圖2,將,分別沿折起,使得平面平面,平面平面,連接,設(shè)上任意一點(diǎn)

1證明:平面;

2,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位教師分別在一中、二中、三中三所中學(xué)里教不同的學(xué)科語(yǔ)文,數(shù)學(xué),英語(yǔ),已知:

①甲不在一中工作,乙不在二中工作;

②在一中工作的教師不教英語(yǔ)學(xué)科;

③在二中工作的教師教語(yǔ)文學(xué)科;

④乙不教數(shù)學(xué)學(xué)科.

可以判斷乙工作地方和教的學(xué)科分別是_________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某空間幾何體的正視圖是三角形,則該幾何體不可能是( ).

A. 圓柱 B. 圓錐 C. 三棱錐 D. 三棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量ξ的分布列為

ξ

1

2

3

4

5

P

0.1

0.2

0.4

0.2

0.1

若η=2ξ﹣3,則η的期望為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】唐代詩(shī)人杜牧的七絕唐詩(shī)《偶題》傳誦至今,道在人間或可傳,小還輕變已多年。今來(lái)海上升高望,不到蓬萊不是仙,由此推斷,后一句中是仙到蓬萊的(

A. 必要條件 B. 充分條件 C. 充要條件 D. 既非充分又非必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案