已知函數(shù)y=f(x)在x=x0處可導,若
lim
k→0
f(x0-k)-f(x0)
2k
=-
1
4
,則f′(x0)等于(  )
A、-
1
2
B、
1
2
C、-2
D、2
考點:導數(shù)的運算
專題:導數(shù)的概念及應(yīng)用
分析:根據(jù)導數(shù)的定義進行求解即可.
解答: 解:由
lim
k→0
f(x0-k)-f(x0)
2k
=-
1
4

得-
1
2
lim
k→0
f(x0-k)-f(x0)
-k
=-
1
4
,
即-
1
2
f′(x0)=-
1
4
,
則f′(x0)=
1
2
,
故選:B
點評:本題主要考查導數(shù)的概念以及導數(shù)的計算,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列關(guān)于互不相同的直線m、l、n和平面α、β的四個命題:其中為真命題的是
 

①若m?α,l∩α=A,點A∉m,則l與m不共面;
②若m⊥α,且n⊥β,n⊥m,則α⊥β;
③當m,n在平面α內(nèi)射影互相垂直,則m⊥n;
④若l∥α,m∥β,α∥β,則l∥m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線ax+
3
y+
3
2
-
1
2
a=0與圓x2+y2=4的位置關(guān)系為( 。
A、相交B、相離C、相切D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知整數(shù)數(shù)集 A={a1,a2,a3,…,an}(a1<a2<a3<…<an,n≥3)具有性質(zhì) P:對任意i,j,k(1≤i<j<k),ai+ak-aj∈A.
(Ⅰ)請舉出一個滿足上述條件且含有5個元素的數(shù)集 A;
(Ⅱ)求證:a1,a2,a3,…,an是等差數(shù)列;
(Ⅲ)已知a1=2,an=2015,且20∈A⊆N,求數(shù)集 A中所有元素的和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
2x-y≤0 
x-3y+5≥0 
x>0 
y>0 
,則z=(
1
9
x•(
1
3
y的最小值為( 。
A、
1
9
B、1
C、
1
81
D、
1
27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知R為實數(shù)集,已知集合M={y|y=
4-x2
},N={x|y=
x-1
},則M∩(∁RN)=( 。
A、{x|0≤x<1}
B、{x|-2≤x<1}
C、{x|0≤x≤2}
D、{x|x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=3,則
sinα+cosα
sinα-2cosα
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求過點A(3,
3
),B(0,0),且圓心在x軸上的圓的方程.

查看答案和解析>>

同步練習冊答案