一直線與直二面角的兩個面所成的角分別為α、β,則α+β的范圍為: (     )
A.0<α+β<π/2B.α+β>π/2
C.0≤α+β≤π/2D.0<α+β≤π/2
只須觀察α+β能否取到特殊值0和即可。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在三棱錐中,側面與面垂直,
(1)  求證:
(2)  設,求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點。
  (1)求證:EF//平面ABC;
(2)求證:平面平面C1CBB1;
(3)求異面直線AB與EB1所成的角。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知SA⊥平面ABC,SA=AB,AB⊥BC,SB=BC,E是SC的中點,
DE⊥SC交AC于D.


 
求二面角E—BD—C的大。

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

給定空間中的直線l及平面.條件“直線l與平面內兩條相交直線都垂直”
是“直線l與平面垂直”的(  。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

四面體ABCD中,AB=BC==CD=DB,點A在面BCD上的射影恰是CD的中點,則對棱BC與AD所成的角等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知平面,,直線滿足,,試判斷直線與平面的位置關系.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知二面角α-PQ-β為60°,點A和B分別在平面α和平面β內,點C在棱PQ上∠ACP=∠BCP=30°,CA=CB=a.
(1)求證:AB⊥PQ;
(2)求點B到平面α的距離;
(3)設R是線段CA上的一點,直線BR與平面α所成的角為45°,求CR的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正三棱錐的外接球的球心O滿足,且外接球的體積為,則該三棱錐的體積為              .

查看答案和解析>>

同步練習冊答案