12.《九章算術》中將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為16π.

分析 由已知可得該“塹堵”是一個以俯視圖為底面的直三棱柱,求出棱柱外接球的半徑,進而可得該“塹堵”的外接球的表面積.

解答 解:由已知可得該“塹堵”是一個以俯視圖為底面的直三棱柱,
底面外接球的半徑r=$\frac{\sqrt{{2}^{2}+{2}^{2}}}{2}$=$\sqrt{2}$,
球心到底面的距離d=$\frac{h}{2}$=$\sqrt{2}$,
故該“塹堵”的外接球的半徑R=$\sqrt{{r}^{2}+oqniszd^{2}}$=2,
故該“塹堵”的外接球的表面積:S=4πR2=16π,
故答案為:16π

點評 本題考查的知識點是棱柱的體積和表面積,棱錐的體積和表面積,球的體積和表面積,簡單幾何體的三視圖,難度基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.矩形ABCD沿BD將△BCD折起,使C點在平面ABD上投影在AB上,折起后下列關系:①△ABC是直角三角形;②△ACD是直角三角形;③AD∥BC;④AD⊥BC.其中正確的是(  )
A.①②④B.②③C.①③④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.記復數(shù)z=a+bi(i為虛數(shù)單位)的共軛復數(shù)為$\overline z=a-bi(a,b∈R)$,已知z=2+i,則$\overline{z^2}$=3-4i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB=BC,PA=AC,E為PC上的動點,當 BE⊥PC時,$\frac{CE}{PC}$的值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,且過點($\frac{\sqrt{3}}{2}$,$\frac{1}{4}$).
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知A、B分別為橢圓E的右頂點、上頂點,過原點O做斜率為k(k>0)的直線交橢圓于C、D兩點,求四邊形ACBD面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如果函數(shù)f(x)=sinωx+$\sqrt{3}$cosωx的兩個相鄰零點間的距離為2,那么f(1)+f(2)+f(3)+…+f(9)的值為( 。
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.將參加環(huán)保知識競賽的學生成績整理后畫出的頻率分布直方圖如圖所示,則圖中a的值為0.028. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)y=f(2x)+2x是偶函數(shù),且f(2)=1,則f(-2)=( 。
A.5B.4C.3D.2

查看答案和解析>>

同步練習冊答案