【題目】某公司代理銷售某種品牌小商品,該產(chǎn)品進(jìn)價(jià)為5元/件,銷售時(shí)還需交納品牌使用費(fèi)3元/件,售價(jià)為元/件,其中,且.根據(jù)市場調(diào)查,當(dāng),且時(shí),每月的銷售量(萬件)與成正比;當(dāng),且時(shí),每月的銷售量(萬件)與成反比.已知售價(jià)為15元/件時(shí),月銷售量為9萬件.

(1)求該公司的月利潤(萬件)與每件產(chǎn)品的售價(jià)(元)的函數(shù)關(guān)系式;

(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該公司的月利潤最大?并求出最大值.

【答案】(1);(2)每件產(chǎn)品的售價(jià)為11元時(shí),該公司的月利潤最大,且最大值為147萬元.

【解析】

(1)根據(jù)h(15)=9分別求出h(x)在不同區(qū)間上的解析式,再得出f(x)的解析式;

(2)利用導(dǎo)數(shù)判斷f(x)的單調(diào)性,結(jié)合換元法分別求出f(x)在不同區(qū)間上的最大值,比較得出f(x)的最大值及對應(yīng)的x的值.

(1),),

,

因?yàn)楫?dāng)時(shí),

代入上述兩式可得,.

所以.

(2)當(dāng)時(shí),

所以,

,得.

列表如下:

因?yàn)?/span>,且,

所以當(dāng)時(shí),取最大值147.

當(dāng)時(shí),,

,則,

,).

因?yàn)?/span>,所以上單調(diào)遞增,

所以當(dāng)時(shí),取最大值99,此時(shí).

綜上,當(dāng)時(shí),取最大值147.

所以當(dāng)每件產(chǎn)品的售價(jià)為11元時(shí),該公司的月利潤最大,且最大值為147萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左焦點(diǎn),O為坐標(biāo)原點(diǎn),為橢圓上的點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點(diǎn)都在橢圓上,且中點(diǎn)在線段(不包括端點(diǎn))上,求面積的最大值,及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級學(xué)生中隨機(jī)抽取名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分分,成績均為不低于分的整數(shù))分成六段:,,…,后得到如圖的頻率分布直方圖.

(1)求圖中實(shí)數(shù)的值;

(2)若從數(shù)學(xué)成績在兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

平面直角坐標(biāo)系xOy中,曲線C.直線l經(jīng)過點(diǎn)Pm,0),且傾斜角為O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.

)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;

)若直線l與曲線C相交于AB兩點(diǎn),且|PA·PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型超市公司計(jì)劃在市新城區(qū)開設(shè)分店,為確定在新城區(qū)開設(shè)分店的個(gè)數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)統(tǒng)計(jì)后得到下列信息(其中表示在該區(qū)開設(shè)分店的個(gè)數(shù),表示這個(gè)分店的年收入之和):

分店個(gè)數(shù)(個(gè))

2

3

4

5

6

年收入(萬元)

250

300

400

450

600

(Ⅰ)該公司經(jīng)過初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的回歸方程;

(Ⅱ)假設(shè)該公司每年在新城區(qū)獲得的總利潤(單位:萬元)與,之間的關(guān)系為,請根據(jù)(Ⅰ)中的線性回歸方程,估算該公司在新城區(qū)開設(shè)多少個(gè)分店時(shí),才能使新城區(qū)每年每個(gè)分店的平均利潤最大.

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為: ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,平面BPC⊥平面DPC,,E,F(xiàn)分別是PC,AD的中點(diǎn)

求證:(1)BE⊥CD;

2)EF∥平面PAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對以下命題:

①隨機(jī)事件的概率與頻率一樣,與試驗(yàn)重復(fù)的次數(shù)有關(guān);

②拋擲兩枚均勻硬幣一次,出現(xiàn)一正一反的概率是;

③若一種彩票買一張中獎(jiǎng)的概率是,則買這種彩票一千張就會中獎(jiǎng);

姚明投籃一次,求投中的概率屬于古典概型概率問題.

其中正確的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓軸負(fù)半軸相交于點(diǎn),與軸正半軸相交于點(diǎn).

1)若過點(diǎn)的直線被圓截得的弦長為,求直線的方程;

2)若在以為圓心,半徑為的圓上存在點(diǎn),使得為坐標(biāo)原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如城鎮(zhèn)小汽車的普及率為75%,即平均每100個(gè)家庭有75個(gè)家庭擁有小汽車,若從如城鎮(zhèn)中任意選出5個(gè)家庭,則下列結(jié)論成立的是( )

A.5個(gè)家庭均有小汽車的概率為

B.5個(gè)家庭中,恰有三個(gè)家庭擁有小汽車的概率為

C.5個(gè)家庭平均有3.75個(gè)家庭擁有小汽車

D.5個(gè)家庭中,四個(gè)家庭以上(含四個(gè)家庭)擁有小汽車的概率為

查看答案和解析>>

同步練習(xí)冊答案