【題目】2019年底,湖北省武漢市等多個(gè)地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者.為及時(shí)有效地對(duì)疫情數(shù)據(jù)進(jìn)行流行病學(xué)統(tǒng)計(jì)分析,某地研究機(jī)構(gòu)針對(duì)該地實(shí)際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無(wú)接觸史),無(wú)武漢旅行史(無(wú)接觸史),有武漢旅行史(有接觸史)和無(wú)武漢旅行史(有接觸史),統(tǒng)計(jì)得到以下相關(guān)數(shù)據(jù).

1)請(qǐng)將列聯(lián)表填寫完整:

有接觸史

無(wú)接觸史

總計(jì)

有武漢旅行史

27

無(wú)武漢旅行史

18

總計(jì)

27

54

2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】1)列聯(lián)表見解析;(2)能

【解析】

1)根據(jù)表格可得有武漢旅行史且有接觸史的有9人,有武漢旅行史且無(wú)接觸史的有18人,可以完成表格;

2)根據(jù)列聯(lián)表計(jì)算卡方,根據(jù)參考數(shù)據(jù)可以得出結(jié)論.

1)請(qǐng)將該列聯(lián)表填寫完整:

有接觸史

無(wú)接觸史

總計(jì)

有武漢旅行史

9

18

27

無(wú)武漢旅行史

18

9

27

總計(jì)

27

27

54

2)根據(jù)列聯(lián)表中的數(shù)據(jù),由于

.

因此,在犯錯(cuò)誤的概率不超過(guò)0.025的前提下,認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,天花板上掛著3串玻璃球,射擊玻璃球規(guī)則:每次擊中1球,每串中下面球沒擊中,上面球不能擊中,則把這6個(gè)球全部擊中射擊方法數(shù)是(

A.78B.60C.48D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x1x2是函數(shù)f(x)aln xbx2x的兩個(gè)極值點(diǎn).

(1)試確定常數(shù)ab的值;

(2)判斷x1x2是函數(shù)f(x)的極大值點(diǎn)還是極小值點(diǎn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平面平行于三棱錐的底面,等邊所在的平面與底面垂直,且,設(shè)

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E1(a>b>0)的離心率為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為.

(1) 求橢圓E的標(biāo)準(zhǔn)方程;

(2) 已知P(t,0)為橢圓E外一動(dòng)點(diǎn),過(guò)點(diǎn)P分別作直線l1l2,直線l1l2分別交橢圓E于點(diǎn)AB和點(diǎn)C,D,且l1l2的斜率分別為定值k1k2,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線兩兩成異面直線.問是否存在直線同時(shí)與相交?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定平面上的五個(gè)點(diǎn)、、,任意三點(diǎn)不共線.由這些點(diǎn)連成4條線段,每個(gè)點(diǎn)至少是一條線段的端點(diǎn).則不同的連結(jié)方式有( ).

A. 120 B. 125 C. 130 D. 135

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對(duì)學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如下:

損壞餐椅數(shù)

未損壞餐椅數(shù)

總 計(jì)

學(xué)習(xí)雷鋒精神前

50

150

200

學(xué)習(xí)雷鋒精神后

30

170

200

總 計(jì)

80

320

400

(1)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?

(2)請(qǐng)說(shuō)明是否有97.5%以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:某射手射擊一次,擊中目標(biāo)的概率是0.9,他連續(xù)射擊三次,且他每次射擊是否擊中目標(biāo)之間沒有影響,有下列結(jié)論:①他三次都擊中目標(biāo)的概率是;②他第三次擊中目標(biāo)的概率是; ③他恰好2次擊中目標(biāo)的概率是;④他至少次擊中目標(biāo)的概率是;⑤他至多2次擊中目標(biāo)的概率是.其中正確命題的序號(hào)是 ________(正確命題的序號(hào)全填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案