某校為了解高一年級(jí)學(xué)生身高情況,按10%的比例對(duì)全校700名高一學(xué)生按性別進(jìn)行抽樣檢查,測(cè)得身高頻數(shù)分布表如下:
表1:男生身高頻數(shù)分布表
身高(cm)
[160,165)
[165,170)
[170,175)
[175,180)
[180,185)
[185,190)
頻數(shù)
2
5
13
13
5
2
表2:女生身高頻數(shù)分布表
身高(cm)
[150,155)
[155,160)
[160,165)
[165,170)
[170,175)
[175,180)
頻數(shù)
1
8
12
5
3
1
(Ⅰ)求該校高一男生的人數(shù);
(Ⅱ)估計(jì)該校高一學(xué)生身高(單位:cm)在[165,180)的概率;
(Ⅲ)在男生樣本中,從身高(單位:cm)在[180,190)的男生中任選3人,設(shè)ξ表示所選3人中身高(單位:cm)在[180,185)的人數(shù),求ξ的分布列和數(shù)學(xué)期望.
ξ
1
2
3




(I)高一男生為400人。á颍
ξ的分布列為:
  ……12分
(Ⅰ)根據(jù)分層抽樣的定義即可算出所求人數(shù);(Ⅱ)利用表格線求出頻率,然后再利用頻率估計(jì)概率;(Ⅲ)先求出隨機(jī)變量的取值,然后求出對(duì)應(yīng)的概率,進(jìn)一步利用分布列和期望的定義求解
(I)樣本人數(shù)男生為40人,由分層抽樣比例為10%可知全校高一男生為400人 
(Ⅱ)由表1、2知,樣本中身高在165-180 cm之間的頻率,由此估計(jì)該校高一學(xué)生身高在[165,180)的概率……4分
(Ⅲ).由題意知: ,
ξ
1
2
3




,……10分  
ξ的分布列為:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)在第9屆校園文化藝術(shù)節(jié)棋類比賽項(xiàng)目報(bào)名過程中,我校高二(2)班共有16名男生和14名女生預(yù)報(bào)名參加,調(diào)查發(fā)現(xiàn),男、女選手中分別有10人和6人會(huì)圍棋.
(I)根據(jù)以上數(shù)據(jù)完成以下22列聯(lián)表:
 
會(huì)圍棋
不會(huì)圍棋
總計(jì)

 
 
 

 
 
 
總計(jì)
 
 
30
并回答能否在犯錯(cuò)的概率不超過0.10的前提下認(rèn)為性別與會(huì)圍棋有關(guān)?
參考公式:其中n=a+b+c+d
參考數(shù)據(jù):

0.40
0.25
0.10
0.010

0.708
1.323
2.706
6.635
(Ⅱ)若從會(huì)圍棋的選手中隨機(jī)抽取3人成立該班圍棋代表隊(duì),則該代表隊(duì)中既有男又
有女的概率是多少?
(Ⅲ)若從14名女棋手中隨機(jī)抽取2人參加棋類比賽,記會(huì)圍棋的人數(shù)為,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
某地區(qū)對(duì)12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查.瞬時(shí)記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.
    視覺        
視覺記憶能力
偏低
中等
偏高
超常
聽覺
記憶
能力
偏低
0
7
5
1
中等
1
8
3

偏高
2

0
1
超常
0
2
1
1
由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
(I)試確定、的值;
(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生的概率;
(III)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩名工人加工同一種零件,兩人每天加工的零件數(shù)相等,所出次品數(shù)分別為,,且的分布列為:

0
1
2




 
試比較兩名工人誰(shuí)的技術(shù)水平更高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如果甲乙兩個(gè)乒乓球選手進(jìn)行比賽,而且他們?cè)诿恳痪种蝎@勝的概率都是,規(guī)定使用“七局四勝制”,即先贏四局者勝.
(1)試分別求甲打完4局、5局才獲勝的概率;
(2)設(shè)比賽局?jǐn)?shù)為ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)
(理)紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A,乙對(duì)B,丙對(duì)C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤比賽結(jié)果相互獨(dú)立.(Ⅰ)求紅隊(duì)至少兩名隊(duì)員獲勝的概率;
(Ⅱ)用表示紅隊(duì)隊(duì)員獲勝的總盤數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)張先生家住H小區(qū),他在C科技園區(qū)工作,從家開車到公司上班有L1L2兩條路線(如圖),L1路線上有A1,A2,A3三個(gè)路口,各路口遇到紅燈的概率均為;L2路線上有B1B2兩個(gè)路口,各路口遇到紅燈的概率依次為,

(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助張先生從上述兩條路線中選擇一條最好的上班路線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

學(xué)校文娛隊(duì)的每位隊(duì)員唱歌、跳舞至少會(huì)一項(xiàng),已知會(huì)唱歌的有2人,會(huì)跳舞的有5人,現(xiàn)從中選2人.設(shè)為選出的人中既會(huì)唱歌又會(huì)跳舞的人數(shù),且
(1)求文娛隊(duì)的隊(duì)員人數(shù);
(2)寫出的概率分布列并計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

甲、乙兩人獨(dú)立地從六門選修課程中任選三門進(jìn)行學(xué)習(xí),記兩人所選課程相同的門數(shù)為,則為     (    )
A.1B.C.2D.

查看答案和解析>>

同步練習(xí)冊(cè)答案