(2013•梅州一模)設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個不同的零點(diǎn),則稱f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍為(  )
分析:由題意可得h(x)=f(x)-g(x)=x2-5x+4-m 在[0,3]上有兩個不同的零點(diǎn),故有 
h(0)≥0
h(3)≥0
h(
5
2
)<0
,由此求得m的取值范圍.
解答:解:∵f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,
故函數(shù)y=h(x)=f(x)-g(x)=x2-5x+4-m在[0,3]上有兩個不同的零點(diǎn),
故有 
h(0)≥0
h(3)≥0
h(
5
2
)<0
,即
4-m≥0
-2-m≥0
25
4
-
25
2
+4-m<0

解得-
9
4
<m≤-2,
故選A.
點(diǎn)評:本題考查函數(shù)零點(diǎn)的判定定理,“關(guān)聯(lián)函數(shù)”的定義,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州一模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).如果定義域為R的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的8高調(diào)函數(shù),那么實數(shù)a的取值范圍是
[-
2
2
]
[-
2
,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州一模)設(shè)等比數(shù)列{an}的公比q=2,前n項和為Sn,則
S4
a2
=
15
2
15
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州一模)已知雙曲線
x2
a2
-
y2
b2
 =1(a>b>0)
的兩條漸近線的夾角為
π
3
,則雙曲線的離心率為
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州一模)某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有甲、乙兩項技術(shù)指標(biāo)需要檢測,設(shè)各項技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響,按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品,為估計各項技術(shù)的達(dá)標(biāo)概率,現(xiàn)從中抽取1000個零件進(jìn)行檢驗,發(fā)現(xiàn)兩項技術(shù)指標(biāo)都達(dá)標(biāo)的有600個,而甲項技術(shù)指標(biāo)不達(dá)標(biāo)的有250個.
(1)求一個零件經(jīng)過檢測不為合格品的概率及乙項技術(shù)指標(biāo)達(dá)標(biāo)的概率;
(2)任意抽取該零件3個,求至少有一個合格品的概率;
(3)任意抽取該種零件4個,設(shè)ξ表示其中合格品的個數(shù),求隨機(jī)變量ξ的分布列.

查看答案和解析>>

同步練習(xí)冊答案