【題目】已知函數(shù) 若,則的值域是____;若的值域是,則實數(shù)的取值范圍是____.
【答案】 . .
【解析】c=0時,f(x)=x2+x=(x+, f(x)在[-2,-] 遞減,在(-,0)遞增,
可得f(-2)取得最大值,且為2,最小值為, 當0<x≤3時,f(x)=遞減,可得f(3)=, 則f(x)∈[,+,綜上可得f(x)的值域為. ∵函數(shù)y=x2+x在區(qū)間
[-2,--] 上是減函數(shù),在區(qū)間(-, ,1]上是增函數(shù),∴當x∈[-2,0)時,函數(shù)f(x)最小值為f(-)=-, 最大值是f(-2)=2;由題意可得c>0,∵當c<x≤3時,f(x)=是減函數(shù)且值域為[, 當f(x)的值域是, 可得,
故答案為(1). . (2). .
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列中, , 成等差數(shù)列;數(shù)列中的前項和為, .
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線, ,則下列說法正確的是( )
A. 把上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
B. 把上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
C. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標縮短到原來的,縱坐標不變,得到曲線
D. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標縮短到原來的,縱坐標不變,得到曲線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 是正三角形, 是等腰三角形, , .
(1)求證: ;
(2)若, ,平面平面,直線與平面所成的角為45°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中, 平面, ,點分別為的中點,設(shè)直線與平面交于點.
(1)已知平面平面,求證: .
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()的左、右焦點分別為、,設(shè)點,在中, ,周長為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點的直線與橢圓相交于、兩點,若直線與的斜率之和為,求證:直線過定點,并求出該定點的坐標;
(3)記第(2)問所求的定點為,點為橢圓上的一個動點,試根據(jù)面積的不同取值范圍,討論存在的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點分別是的中點.
(Ⅰ)求證: 平面;
(Ⅱ)求證: 平面;
(Ⅲ)在棱上求作一點,使得,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線經(jīng)過坐標原點,求及該切線的方程;
(2)設(shè),若函數(shù)的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com