在正三角形ABC中,D是BC上的點(diǎn),AB=3,BD=2,則
AB
AD
 
分析:根據(jù)題意利用兩個(gè)向量的加減法的法則,以及其幾何意義、兩個(gè)向量的數(shù)量積的定義,求得
AB
AD
的值.
解答:解:由題意可得
AB
AD
=
AB
•(
AB
+
2
3
BC
)=
AB
2
+
2
3
|
AB
|•|
BC
|cos120°=9+
2
3
×3×3×(-
1
2
)
=6,
故答案為:6.
點(diǎn)評(píng):本題主要考查兩個(gè)向量的加減法的法則,以及其幾何意義,兩個(gè)向量的數(shù)量積的定義,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

197、已知結(jié)論“在正三角形ABC中,若D是邊BC中點(diǎn),G是三角形ABC的重心,則AG:GD=2:1”,如果把該結(jié)論推廣到空間,則有命題
“在正四面體ABCD中,若M是底面BCD的中心,O是正四面體ABCD的中心,則AO:OM=3:1.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在正三角形ABC中,E、F分別是AB、AC邊上的點(diǎn),滿(mǎn)足
AE
EB
=
CF
FA
=
1
2
(如圖1).將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連接A1B、A1C. (如圖2)求證:A1E⊥平面BEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點(diǎn),G,J分別為AF,DE的中點(diǎn).將△ABC沿DE,EF,DF折成三棱錐以后,GJ與DE所成角的度數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三角形ABC中,D,E,F(xiàn)分別為AB,BC,AC的中點(diǎn),G,H,I分別為DE,F(xiàn)C,EF的中點(diǎn),將
△ABC沿DE,EF,DF折成三棱錐,則異面直線(xiàn)BG與IH所成的角為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案