【題目】在平面直角坐標(biāo)系中,已知直線的方程為,.

1)若直線軸、軸上的截距之和為-1,求坐標(biāo)原點(diǎn)到直線的距離;

2)若直線與直線分別相交于、兩點(diǎn),點(diǎn)、兩點(diǎn)的距離相等,求的值.

【答案】(1)(2)

【解析】

(1)根據(jù)直線軸、軸上的截距之和為-1,列等式可得,從而可得直線的方程,再用點(diǎn)到直線的距離公式可得答案;

(2)先判斷得點(diǎn)為線段的中點(diǎn),設(shè)出,根據(jù)中點(diǎn)公式求出,將其代入直線可解得的坐標(biāo),再將的坐標(biāo)代入的方程可解得.

1)解法一:令得橫截距;

,得橫截距;

則有,解得,

此時(shí),直線的方程為,即.

坐標(biāo)原點(diǎn)到直線的距離.

2)∵點(diǎn)在直線上,且點(diǎn)、距離相等,

∴點(diǎn)為線段的中點(diǎn),

如圖所示:

設(shè)直線的交點(diǎn)為,則直線的交點(diǎn).

,

解得.

.

又∵點(diǎn)在直線上,

,

解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為,點(diǎn)、兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),并且滿足,,動(dòng)點(diǎn)的軌跡為曲線.

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)作曲線的任意一條切線(不含軸),直線與切線相交于點(diǎn),直線與切線軸分別相交于點(diǎn)與點(diǎn),試探究的值是否為定值,若為定值請(qǐng)求出該定值;若不為定值請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(1,2)是函數(shù)的圖象上一點(diǎn),數(shù)列的前項(xiàng)和是.

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)橢圓的下頂點(diǎn)為,右焦點(diǎn)為,離心率為.已知點(diǎn)是橢圓上一點(diǎn),當(dāng)直線經(jīng)過點(diǎn)時(shí),原點(diǎn)到直線的距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與圓:相交于點(diǎn)(異于點(diǎn)),設(shè)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,直線與橢圓相交于點(diǎn)(異于點(diǎn)).①若,求的面積;②設(shè)直線的斜率為,直線的斜率為,求證:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中, 點(diǎn)邊的中點(diǎn),將沿折起,使平面平面,連接得到如圖所示的幾何體.

(1)求證; 平面;

(2)若二面角的平面角的正切值為求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過點(diǎn),斜率為1的直線與拋物線交于點(diǎn),,且.

(1)求拋物線的方程;

(2)過點(diǎn)作直線交拋物線于不同于的兩點(diǎn)、,若直線,分別交直線兩點(diǎn),求取最小值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為,其中為底面的中心,,分別為的中點(diǎn),平面與底面交于直線.

1)求證:.

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線與圓有公共點(diǎn),且圓在點(diǎn)處的切線與雙曲線的一條漸近線平行,則該雙曲線的實(shí)軸長(zhǎng)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)線段上是否存在點(diǎn),使得直線平面若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案