【題目】已知函數(shù)f(x)=sin(x+ )+sin(x﹣ )+acosx+b,(a,b∈R)且均為常數(shù)).
(1)求函數(shù)f(x)的最小正周期;
(2)若f(x)在區(qū)間[﹣ ,0]上單調(diào)遞增,且恰好能夠取到f(x)的最小值2,試求a,b的值.
【答案】
(1)解:)f(x)=sin(x+ )+sin(x﹣ )+acosx+b
=2sinxcos +acosx+b= sinx+acosx+b= sin(x+θ)+b,
所以,函數(shù)f(x)的最小正周期為2π
(2)解:由(1)可知:f(x)的最小值為﹣ +b,所以,﹣ +b=2.①
另外,由f(x)在區(qū)間[﹣ ,0]上單調(diào)遞增,可知f(x)在區(qū)間[﹣ ,0]上的最小值為f(﹣ ),
所以,f(﹣ )=2,得a+2b=7,②
聯(lián)立①②解得a=﹣1,b=4.
【解析】(1)利用和差化積公式和輔助角公式將已知函數(shù)關(guān)系式轉(zhuǎn)化為正弦函數(shù),然后由正弦函數(shù)的性質(zhì)求其最小正周期;(2)根據(jù)正弦函數(shù)圖象的單調(diào)性和正弦函數(shù)的最值的求法進(jìn)行解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2009四川卷文)設(shè)矩形的長(zhǎng)為,寬為,其比滿足∶=,這種矩形給人以美感,稱為黃金矩形。黃金矩形常應(yīng)用于工藝品設(shè)計(jì)中。下面是某工藝品廠隨機(jī)抽取兩個(gè)批次的初加工矩形寬度與長(zhǎng)度的比值樣本:
甲批次:0.598 0.625 0.628 0.595 0.639
乙批次:0.618 0.613 0.592 0.622 0.620
根據(jù)上述兩個(gè)樣本來估計(jì)兩個(gè)批次的總體平均數(shù),與標(biāo)準(zhǔn)值0.618比較,正確結(jié)論是
A. 甲批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近
B. 乙批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近
C. 兩個(gè)批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度相同
D. 兩個(gè)批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y= 的定義域?yàn)椋?/span> )
A.(﹣∞,2)
B.(2,+∞)
C.(2,3)∪(3,+∞)
D.(2,4)∪(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}與{bn}滿足an=2bn+3(n∈N*),若{bn}的前n項(xiàng)和為Sn= (3n﹣1)且λan>bn+36(n﹣3)+3λ對(duì)一切n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題14分)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;并指出x,y 是否線性相關(guān);
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?
(參考:用最小二乘法求線性回歸方程系數(shù)公式,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記實(shí)數(shù)x1 , x2 , …,xn中最小數(shù)為min{x1 , x2 , …,xn},則定義在區(qū)間[0,+∞)上的函數(shù)f(x)=min{x2+1,x+3,13﹣x}的最大值為( )
A.5
B.6
C.8
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,點(diǎn)M和N分別為A1B1和BC的中點(diǎn).
(1)求證:AC⊥BM;
(2)求證:MN∥平面ACC1A1;
(3)求二面角M﹣BN﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有50名學(xué)生,一次考試后數(shù)學(xué)成績(jī)ξ~N(110,102),若P(100≤ξ≤110)=0.34,則估計(jì)該班學(xué)生數(shù)學(xué)成績(jī)?cè)?/span>120分以上的人數(shù)為 ( )
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}前三項(xiàng)的和為﹣3,前三項(xiàng)的積為8.
(I)求等差數(shù)列{an}的通項(xiàng)公式;
(II)若a2 , a3 , a1成等比數(shù)列,求數(shù)列{|an|}的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com