如圖是1,2兩組各7名同學(xué)體重(單位:kg)數(shù)據(jù)的莖葉圖.設(shè)1,2兩組數(shù)據(jù)的平均數(shù)依次為
.
x
1
.
x
2
,標(biāo)準(zhǔn)差依次為s1和s2,那么( 。
A、
.
x
1
.
x
2
,s1s2
B、
.
x
1
.
x
2
,s1s2
C、
.
x
1
.
x
2
,s1s2
D、
.
x
1
.
x
2
s1s2
考點(diǎn):莖葉圖
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)莖葉圖看出7個數(shù)據(jù),得到7個體重?cái)?shù),求這組數(shù)據(jù)的平均分,再根據(jù)方差的公式,做出這組數(shù)據(jù)的方差.最后比較大小即可.
解答: 解:由莖葉圖知,1組各7名同學(xué)體重(單位:kg)數(shù)據(jù)為:53,56,57,58,61,70,72,
2組各7名同學(xué)體重(單位:kg)數(shù)據(jù)為:54,56,58,60,61,72,73,
∴1組數(shù)據(jù)的平均分是
53+56+57+58+61+70+72
7
=61,
1組數(shù)據(jù)的平均分是
54+56+58+60+61+72+73
7
=62,
∴1組數(shù)據(jù)的方差是
1
7
(64+25+16+9+0+81+121)=43.9,
2組數(shù)據(jù)的方差是
1
7
(64+36+16+4+1+100+121)=48.9,
.
x
1
.
x
2
,s1s2
,
故選C.
點(diǎn)評:本題考查莖葉圖和平均數(shù),方差.解題的關(guān)鍵是看清所給的數(shù)據(jù)的個數(shù),以及準(zhǔn)確的讀取數(shù)據(jù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin2ωx+2
3
sinωx•cosωx-cos2ωx+λ
,(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈(
1
2
,1)

(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)(
π
4
,0)
,求函數(shù)f(x)在x∈[0,
π
2
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將八進(jìn)制數(shù)131(8)化為二進(jìn)制數(shù)為( 。
A、1011001(2)
B、1001101(2)
C、1000011(2)
D、1100001(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈Z,n∈N*,設(shè)f(n)是不等式組
x≥1
0≤y≤-x+n
表示的平面區(qū)域內(nèi)可行解的個數(shù),則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的各棱長均為2,其正(主)視圖如圖所示,則此三棱柱側(cè)(左)視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知D是面積為1的△ABC的邊AB上任一點(diǎn),E是邊AC上任一點(diǎn),連結(jié)DE,F(xiàn)是線段DE上一點(diǎn),連結(jié)BF,G是BF上一點(diǎn),設(shè)
AD
=λ1
AB
,
AE
=λ2
AC
,
DF
=λ3
DE
,
BG
=λ4
BF
,且λ1+λ4-λ2-λ3=
2
3
,記△GDF的面積為S=f(λ1,λ2,λ3,λ4),則S的最大值是(  )
A、
16
81
B、
1
64
C、
8
81
D、
1
81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某零件的正(主)視圖與側(cè)(左)視圖均是如圖所示的圖形(實(shí)線組成半徑為2cm的半圓,虛線是等腰三角形的兩腰),俯視圖是一個半徑為2cm的圓(包括圓心),則該零件的表面積是( 。
A、4πcm2
B、8πcm2
C、(4+2
5
)πcm2
D、(8+2
5
)πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2-2ax-6ay+10a2-4a=0(0<a≤4)的圓心為C,直線L:y=x+m.
(1)若a=2,求直線L被圓C所截得的弦長|AB|的最大值;
(2)若m=2,求直線L被圓C所截得的弦長|AB|的最大值;
(3)若直線L是圓心C下方的切線,當(dāng)a變化時,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+(y-4)2=4,點(diǎn)O是坐標(biāo)原點(diǎn).直線l:y=kx與圓C交于M,N兩點(diǎn).
(Ⅰ)求k的取值范圍;
(Ⅱ)過(1,3)點(diǎn)作圓的弦,求最小弦長?

查看答案和解析>>

同步練習(xí)冊答案