求證(a>0,a≠1):
(1)loga(n2+n+1)+loga(n-1)=loga(n3-1)(n>1);
(2)loga(bs+b-s+2)+loga(bs+b-s-2)=2loga(bs-b-s)(b>1,s>0).
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由立方差公式可得(n2+n+1)×(n-1)=(n3-1),進而根據(jù)對數(shù)的運算性質(zhì)可得:當n>1時,loga(n2+n+1)+loga(n-1)=loga(n3-1)
(2)由平方差公式和完全平方公式可得(bs+b-s+2)(bs+b-s-2)=(bs+b-s2-22=(bs-b-s2,進而根據(jù)對數(shù)的運算性質(zhì)可得:當b>1,s>0時,loga(bs+b-s+2)+loga(bs+b-s-2)=2loga(bs-b-s
解答: 解:(1)∵(n2+n+1)×(n-1)=(n3-1),
∴當n>1時,loga(n2+n+1)+loga(n-1)=loga[(n2+n+1)(n-1)]=loga(n3-1)
(2)∵(bs+b-s+2)(bs+b-s-2)=(bs+b-s2-22=(bs-b-s2,
∴當b>1,s>0時,
loga(bs+b-s+2)+loga(bs+b-s-2)=loga[(bs+b-s+2)(bs+b-s-2)]=loga(bs-b-s2=2loga(bs-b-s).
點評:本題考查的知識點是對數(shù)的運算性質(zhì),立方差公式,平方差公式和完全平方公式,難度不大,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(log
1
2
x
2-log 
1
2
x+5,x∈[2,4],求f(x)的最值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,且A1A=4.梯形ABCD的面積為6,且AD∥BC,AD=2BC,AB=2.平面A1DCE與B1B交于點E.
(1)證明:EC∥A1D;
(2)求點C到平面ABB1A1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人去上班,先跑步,后步行.如果y表示該人所走的距離,x表示出發(fā)后的時間,則下列圖象符合此人走法的是
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:不等式x2+x+1≤0的解集為R,命題q:不等式
x-2
x-1
≤0的解集為{x|1<x≤2},則命題“p∨q”“p∧q”“?p”“?q”中真命題的個數(shù)有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|x<
18
}
,m=3
2
,則下列關(guān)系式中正確的是(  )
A、m∈MB、{m}∈M
C、{m}?MD、m∉M

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+bx-a-ab(a≠0),當x∈(-1,3)時,f(x)>0;當x∈(-∞,-1)∪(3,+∞)時,f(x)<0.
(1)求f(x)在(-1,2)內(nèi)的值域;
(2)若方程f(x)=c在[0,3]有兩個不等實根,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我國西部某省4A級風景區(qū)內(nèi)住著一個少數(shù)民族村,該村投資了800萬元修復和加強民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復好村民俗文化基礎(chǔ)設(shè)施后,任何一個月內(nèi)(每月按30天計算)每天的旅游人數(shù)f(x)與第x天近似地滿足f(x)=8+
8
x
(千人),且參觀民俗文化村的游客人均消費g(x)近似地滿足g(x)=143-|x-22|(元).
(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天純收入的計量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)對任意的x∈R滿足f(-x)=-f(x),當x≥0時,f(x)=x2-2x則不等式xf(x)>0的解集是(  )
A、(2,+∞)
B、(-2,0)∪(2,+∞)
C、(-∞,-2)∪(2,+∞)
D、(-2,0)∪(0,2)

查看答案和解析>>

同步練習冊答案