已知命題p:不等式x2+x+1≤0的解集為R,命題q:不等式
x-2
x-1
≤0的解集為{x|1<x≤2},則命題“p∨q”“p∧q”“?p”“?q”中真命題的個(gè)數(shù)有
 
個(gè).
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:根據(jù)一元二次不等式解的情況和判別式△的關(guān)系,及解分式不等式即可判斷出p為假命題,q為真命題,然后根據(jù)p∨q,p∧q,¬p,¬q真假和p,q真假的關(guān)系即可判斷出哪些是真命題,求出真命題的個(gè)數(shù).
解答: 解:對(duì)于不等式x2+x+1≤0,△=1-4<0,
∴該不等式的解集為∅,所以命題p為假命題;
x-2
x-1
≤0
即得命題q為真命題;
∴p∨q,¬p為真命題;
∴真命題的個(gè)數(shù)是2.
故答案為:2.
點(diǎn)評(píng):考查一元二次不等式的解的情況和判別式△的關(guān)系,解分式不等式,p∨q,p∧q,¬p的真假和p,q真假的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)=
x2+3x+2a
x
,x∈[2,+∞)
(1)當(dāng)a=
1
2
時(shí),求函數(shù)f(x)的最小值;
(2)若對(duì)任意x∈[2,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=loga(x+3)-1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上(其中m,n>0),則
1
m
+
2
n
的最小值等于(  )
A、16B、12C、9D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,直線l的極坐標(biāo)方程為θ=
π
3
(ρ∈R),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α為參數(shù)),求直線l與曲線C的交點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用換底公式求值或證明:
(1)求值:log225•log34•log59;
(2)求值:(log43+log83)(log32+log92);
(3)證明:logab•logbc•logca=1(a>0,b>0,c>0,a≠1,b≠1,c≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證(a>0,a≠1):
(1)loga(n2+n+1)+loga(n-1)=loga(n3-1)(n>1);
(2)loga(bs+b-s+2)+loga(bs+b-s-2)=2loga(bs-b-s)(b>1,s>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足下列條件:
①當(dāng)x∈R時(shí),f(x)的最小值為0,且f(x-1)=f(-x-1)恒成立;
②當(dāng)x∈(0,5)時(shí),2x≤f(x)≤4|x-1|+2恒成立.
(1)求f(1)的值;
(2)求f(x)的解析式;
(3)求最大的實(shí)數(shù)m(m>1),使得存在實(shí)數(shù)t,只要當(dāng)x∈[1,m]時(shí),就有f(x+t)≤2x成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β∈(0,π),則α+β=
π
2
是sinα=cosβ的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x2-ax+b<0的解集為(1,2),則不等式
1
x
b
a
的解集為(  )
A、(
2
3
,+∞)
B、(-∞,0)∪(
3
2
,+∞)
C、(
3
2
,+∞)
D、(-∞,0)∪(
2
3
,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案