設(shè)函數(shù)
(Ⅰ)當(dāng)曲線處的切線斜率
(Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅲ)已知函數(shù)有三個互不相同的零點0,,且。若對任意的
,恒成立,求m的取值范圍。
(1)1(2)在和內(nèi)減函數(shù),在內(nèi)增函數(shù)。函數(shù)在處取得極大值,且=
函數(shù)在處取得極小值,且=
解析 解析 當(dāng)
所以曲線處的切線斜率為1.
(2)解析 ,令,得到
因為
當(dāng)x變化時,的變化情況如下表:
|
|
|
|
|
|
| + | 0 | - | 0 | + |
| 極小值 | 極大值 |
在和內(nèi)減函數(shù),在內(nèi)增函數(shù)。
函數(shù)在處取得極大值,且=
函數(shù)在處取得極小值,且=
(3)解析 由題設(shè),
所以方程=0由兩個相異的實根,故,且,解得
因為
若,而,不合題意
若則對任意的有
則又,所以函數(shù)在的最小值為0,于是對任意的,恒成立的充要條件是,解得
綜上,m的取值范圍是
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)等比數(shù)列的首項為,公比為(為正整數(shù)),且滿足是與的等差中項;等差數(shù)列滿足.
(1)求數(shù)列,的通項公式;
(2) 若對任意,有成立,求實數(shù)的取值范圍;
(3)對每個正整數(shù),在和之間插入個2,得到一個新數(shù)列,設(shè)是數(shù)列的前項和,試求滿足的所有正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是增函數(shù),
則函數(shù)在區(qū)間上的圖象可能是 ( )
|
A . B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)是兩條不同的直線,是兩個不重合的平面,給出下列四個命題:
①若∥,,則; ②若∥,,,則∥;
③若,,則∥; ④若,,,則.
其中真命題的序號為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com