求值:2log39+log93-0.70-2-1+25 
1
2
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用指數(shù)和對數(shù)的運(yùn)算性質(zhì)和運(yùn)算法則求解.
解答: 解:2log39+log93-0.70-2-1+25 
1
2

=4+
1
2
-1-
1
2
+5
=8.
點(diǎn)評:本題考查指數(shù)式的求值,是基礎(chǔ)題,解題時要認(rèn)真審題,注意指數(shù)和對數(shù)的運(yùn)算性質(zhì)和運(yùn)算法則的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若在直角坐標(biāo)平面內(nèi)A,B兩點(diǎn)滿足條件:
①點(diǎn)A,B都在函數(shù)y=f(x)的圖象上;
②點(diǎn)A,B關(guān)于原點(diǎn)對稱,則稱A,B為函數(shù)y=f(x)的一個“黃金點(diǎn)對”.
那么函數(shù)f(x)=
x2+2x-2(x≤0)
1
x
(x>0)
的“黃金點(diǎn)對”的個數(shù)是(  )
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC內(nèi)接于以O(shè)為圓心,1為半徑的圓,且
OA
+
AB
+
OC
=
0
,且|
OA
|=|
AB
|,則
CA
CB
=( 。
A、3
B、
3
C、
3
2
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下函數(shù)中,周期為2π的是( 。
A、y=sin
x
2
B、y=sin2x
C、y=|sin
x
2
|
D、y=|sin2x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的函數(shù)f(x)滿足:對任意a,b∈R有f(a+b)=f(a)+f(b)+1.
(1)求f(0)的值;
(2)令F(x)=f(x)+1,判斷y=F(x)的奇偶性;
(3)若x>0有f(x)>-1,解不等式f(x)+f(x+5)>-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-ax+(a-1)lnx,求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:x2+(y-2)2=4,Q是x軸上的動點(diǎn),QA、QB分別切圓M于A、B兩點(diǎn).
(1)如果|AB|=2
2
,求直線MQ的方程;
(2)求動弦AB的中點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個等比數(shù)列的第三項和第四項分別是12和18,試求它的第一項和第二項及通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=-x2+2ax-a在區(qū)間[0,1]上有最大值2,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案