設(shè)函數(shù)f(x)在定義域內(nèi)可導,y=f(x)的圖象如圖所示,則導函數(shù)f′(x)的圖象可能是(  )
A、
B、
C、
D、
考點:利用導數(shù)研究函數(shù)的單調(diào)性
專題:作圖題,導數(shù)的概念及應用
分析:先根據(jù)函數(shù)f(x)的圖象判斷單調(diào)性,從而得到導函數(shù)的正負情況,最后可得答案.
解答: 解:原函數(shù)的單調(diào)性是:當x<0時,增;當x>0時,單調(diào)性變化依次為增、減、增,
故當x<0時,f′(x)>0;當x>0時,f′(x)的符號變化依次為+、-、+.
故選:C.
點評:本題主要考查函數(shù)的單調(diào)性與其導函數(shù)的正負之間的關(guān)系,即當導函數(shù)大于0時原函數(shù)單調(diào)遞增,當導函數(shù)小于0時原函數(shù)單調(diào)遞減.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),對?x∈R恒有f(x+1)=f(x-1)-f(2),且當x∈(1,2)時,f(x)=x2-3x+1,則f(
1
2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
log0.5x
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓(x-1)2+(y+2)2=20在x軸上截得的弦長是( 。
A、8
B、6
C、6
2
D、4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,a≠1,M>0,N>0,那么下列各式中錯誤的是( 。
A、logα(M+N)=logαM+logαN
B、logα
M
N
=logαM-logαN
C、logαMn=nlogαM
D、logαMN=logαM+logαN

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,直線ρsin(θ+
π
4
)=2,被圓ρ=3截得的弦長為( 。
A、2
2
B、2
C、2
5
D、2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+2y≥2
2x+y≤4
4x-y≥-1
,則目標函數(shù)z=3x-y+3的取值范圍為( 。
A、[-
3
2
,6]
B、[
3
2
,9]
C、[-2,3]
D、[1,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=sin3x的圖象適當變化就可以得到y(tǒng)=
2
2
(sin3x-cos3x)的圖象,這個變化可以是( 。
A、沿x軸方向向右平移
π
4
B、沿x軸方向向左平移
π
4
C、沿x軸方向向右平移
π
12
D、沿x軸方向向左平移
π
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點,以O(shè)為圓心,OF1為半徑的圓與雙曲線在第一象限的交點為P,若三角形PF1F2的面積為3a2,則雙曲線離心率為( 。
A、
2
B、
3
C、
6
2
D、2

查看答案和解析>>

同步練習冊答案