【題目】一個多面體的直觀圖(圖1)及三視圖(圖2)如圖所示,其中M,N分別是AF,BC的中點

(1)求證:MN∥平面CDEF:
(2)求二面角A﹣CF﹣B的余弦值;

【答案】
(1)證明:由三視圖知,

該多面體是底面為直角三角形的直三棱柱ADE﹣BCF,

且AB=BC=BF=4,DE=CF= ,∠CBF=90°,

連結(jié)BE,M在BE上,連結(jié)CE

EM=BM,CN=BN,所以MN∥CE,CE面CDEF,

所以MN∥平面CDEF.


(2)解法一:作BQ⊥CF于Q,連結(jié)AQ,

面BFC⊥面ABFE,面ABFE∩面BFC=BF,

AB面ABFE,AB⊥BF,

∴AB⊥面BCF,

CF面BCF,∴AB⊥CF,BQ⊥CF,AB∩BQ=B,

∴CF⊥面ABQ,AQ面ABQ,

AQ⊥CF,∴∠AQB為所求的二面角的平面角,

在Rt△ABQ中,tan∠AQB= = = ,

∴cos ,

∴二面角A﹣CF﹣B的余弦值為

解法二:以EA,AB,AD所在直線為x軸,y軸,z軸,

建立空間直角坐標(biāo)系,

A(0,0,0),B(0,4,0),C(0,4,4),F(xiàn)(﹣4,4,0),

面CBF法向量為

,

設(shè)面ACF法向量為 ,

取z=﹣1,所以

設(shè)二面角為θ,

∴二面角A﹣CF﹣B的余弦值為


【解析】(Ⅰ)由三視圖知,該多面體是底面為直角三角形的直三棱柱ADE﹣BCF,且AB=BC=BF=4,DE=CF= ,∠CBF=90°,由此能證明MN∥平面CDEF.(Ⅱ)(法一)作BQ⊥CF于Q,連結(jié)AQ,由已知得AB⊥面BCF,AB⊥CF,BQ⊥CF,∠AQB為所求的二面角的平面角,由此能求出二面角A﹣CF﹣B的余弦值.(Ⅱ)(法二):以EA,AB,AD所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣CF﹣B的余弦值.
【考點精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的菱形中, ,點、分別在邊、上.點與點、不重合, , ,沿翻折到的位置,使平面平面

(Ⅰ)求證: 平面;

(Ⅱ)記三棱錐的體積為,四棱錐的體積為,且,求此時線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且
(1)求角A的大;
(2)若a=3,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,其中 , ,k∈R.
(1)當(dāng)k為何值時,有
(2)若向量 的夾角為鈍角,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA、OB是兩條公路(近似看成兩條直線), ,在∠AOB內(nèi)有一紀(jì)念塔P(大小忽略不計),已知P到直線OA、OB的距離分別為PD、PE,PD=6千米,PE=12千米.現(xiàn)經(jīng)過紀(jì)念塔P修建一條直線型小路,與兩條公路OA、OB分別交于點M、N.
(1)求紀(jì)念塔P到兩條公路交點O處的距離;
(2)若紀(jì)念塔P為小路MN的中點,求小路MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果不等式ax2+bx+c>0的解集為{x|﹣2<x<4},那么對于函數(shù)f(x)=ax2+bx+c應(yīng)有(
A.f(5)<f(2)<f(﹣1)
B.f(﹣1)<f(5)<f(2)
C.f(2)<f(﹣1)<f(5)
D.f(5)<f(﹣1)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場在一部向下運行的手扶電梯終點的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長AC為8米.該廣告畫最高點E到地面的距離為10.5米.最低點D到地面的距離6.5米.假設(shè)某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ.
(1)設(shè)此人到直線EC的距離為x米,試用x表示點M到地面的距離;
(2)此人到直線EC的距離為多少米,視角θ最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,AD上,AE=AF=4,現(xiàn)將△AEF沿線段EF折起到△A′EF位置,使得A′C=2

(1)求五棱錐A′﹣BCDFE的體積;
(2)求平面A′EF與平面A′BC的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

某港灣的平面示意圖如圖所示, , , 分別是海岸線上的三個集鎮(zhèn), 位于的正南方向6km處, 位于的北偏東方向10km處.

(Ⅰ)求集鎮(zhèn) 間的距離;

(Ⅱ)隨著經(jīng)濟(jì)的發(fā)展,為緩解集鎮(zhèn)的交通壓力,擬在海岸線上分別修建碼頭,開辟水上航線.勘測時發(fā)現(xiàn):以為圓心,3km為半徑的扇形區(qū)域為淺水區(qū),不適宜船只航行.請確定碼頭的位置,使得之間的直線航線最短.

查看答案和解析>>

同步練習(xí)冊答案