(本題滿分14分)已知,滿足
.
(I)將表示為
的函數(shù)
,并求
的最小正周期;
(II)已知分別為
的三個(gè)內(nèi)角
對(duì)應(yīng)的邊長(zhǎng),若
對(duì)所有
恒成立,且
,求
的取值范圍.
解:(I)由得
即
所以,其最小正周期為
. ……………6分
(II)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052514231456255367/SYS201205251425161562342076_DA.files/image007.png">對(duì)所有恒成立
所以,且
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052514231456255367/SYS201205251425161562342076_DA.files/image011.png">為三角形內(nèi)角,所以,所以
. ……………9分
由正弦定理得,
,
,
,
,
所以的取值范圍為
…………14分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)已知向量 ,
,函數(shù)
. (Ⅰ)求
的單調(diào)增區(qū)間; (II)若在
中,角
所對(duì)的邊分別是
,且滿足:
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)已知,且以下命題都為真命題:
命題 實(shí)系數(shù)一元二次方程
的兩根都是虛數(shù);
命題 存在復(fù)數(shù)
同時(shí)滿足
且
.
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知函數(shù)
(1)若,求x的值;
(2)若對(duì)于
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)
已知橢圓:
的離心率為
,過(guò)坐標(biāo)原點(diǎn)
且斜率為
的直線
與
相交于
、
,
.
⑴求、
的值;
⑵若動(dòng)圓與橢圓
和直線
都沒有公共點(diǎn),試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
((本題滿分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF
(如圖).
(1)當(dāng)x=2時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,
求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com