精英家教網 > 高中數學 > 題目詳情

【題目】已知點,圓,點是圓上一動點, 的垂直平分線與線段交于點.

(1)求點的軌跡方程;

(2)設點的軌跡為曲線,過點且斜率不為0的直線交于兩點,點關于軸的對稱點為,證明直線過定點,并求面積的最大值.

【答案】(1)(2)

【解析】【試題分析】(1由于,所以的軌跡為橢圓,利用橢圓的概念可求得橢圓方程.(2)當直線的斜率存在時,設出直線方程和點的坐標,聯立直線方程和橢圓方程,寫出韋達定理,求得直線的方程,求得其縱截距為,即過.驗證當斜率不存在是也過.求出三角形面積的表達式并利用基本不等式求得最大值.

【試題解析】

解:(1)由已知得: ,所以

,所以點的軌跡是以為焦點,長軸長等于4的橢圓,

所以點軌跡方程是.

(2)當存在時,設直線, ,則,

聯立直線與橢圓得,

,

,所以直線,

所以令,得,

,

所以直線過定點,(當不存在時仍適合)

所以的面積 ,當且僅當時,等號成立.

所以面積的最大值是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當為何值時, 軸為曲線的切線;

(2)用表示中的最小值,設函數,討論零點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(1)若兩函數圖象有兩個不同的公共點,求實數的取值范圍;

(2)若, ,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 , 是函數的極值點.

(1)若,求函數的最小值;

(2)若不是單調函數,且無最小值,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知曲線的極坐標方程為,以極點為平面直角坐標系的原點,極軸為的正半軸,建立平面直角坐標系.

(1)若曲線為參數)與曲線相交于兩點,求;

(2)若是曲線上的動點,且點的直角坐標為,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知.

1若方程上有實數根,求實數的取值范圍;

2上的最小值為,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地隨著經濟的發(fā)展,居民收入逐年增長.該地一建設銀行統(tǒng)計連續(xù)五年的儲蓄存款年底余額得到下表:

年份

儲蓄存款

(千億元)

為便于計算,工作人員將上表的數據進行了處理, ,得到下表:

時間

儲蓄存款

關于的線性回歸方程;

通過中的方程,求出關于的回歸方程;

用所求回歸方程預測到年年底,該地儲蓄存款額可達多少?

附:線性回歸方程,其中 .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線 )的焦點是橢圓 )的右焦點,且兩曲線有公共點

1)求橢圓的方程;

2)橢圓的左、右頂點分別為, ,若過點且斜率不為零的直線與橢圓交于, 兩點,已知直線相較于點,試判斷點是否在一定直線上?若在,請求出定直線的方程;若不在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當時,求曲線在點處的切線方程;

2)當時,求最大的整數,使得時,函數圖象上的點都在

所表示的平面區(qū)域內(含邊界.

查看答案和解析>>

同步練習冊答案