在如圖所示的空間幾何體中,平面ACD⊥平面ABC,△ACD與△ACB是邊長為2的等邊三角形,BE=2,BE和平面ABC所成的角為60°,且點E在平面ABC上的射影落在∠ABC的平分線上.
(Ⅰ)求證:DE∥平面ABC;
(Ⅱ)求二面角E-BC-A的余弦值.
考點:用空間向量求平面間的夾角,直線與平面平行的判定,與二面角有關(guān)的立體幾何綜合題
專題:空間位置關(guān)系與距離,空間向量及應(yīng)用
分析:(Ⅰ)取AC中點O,連接BO,DO,由題設(shè)條件推導(dǎo)出DO⊥平面ABC,作EF⊥平面ABC,由已知條件推導(dǎo)出∠EBF=60°,由此能證明DE∥平面ABC.
(Ⅱ)法一:作FG⊥BC,垂足為G,連接EG,能推導(dǎo)出∠EGF就是二面角E-BC-A的平面角,由此能求出二面角E-BC-A的余弦值.
法二:以O(shè)A為x軸,以O(shè)B為y軸,以O(shè)D為z軸,建立空間直角坐標系O-xyz,利用向量法能求出二面角E-BC-A的余弦值.
解答: (本小題滿分12分)
解:(Ⅰ)由題意知,△ABC,△ACD都是邊長為2的等邊三角形,
取AC中點O,連接BO,DO,
則BO⊥AC,DO⊥AC,…(2分)
又∵平面ACD⊥平面ABC,
∴DO⊥平面ABC,作EF⊥平面ABC,
那么EF∥DO,根據(jù)題意,點F落在BO上,
∵BE和平面ABC所成的角為60°,
∴∠EBF=60°,
∵BE=2,∴EF=DO=
3
,…(4分)
∴四邊形DEFO是平行四邊形,
∴DE∥OF,
∵DE不包含于平面ABC,OF?平面ABC,
∴DE∥平面ABC.…(6分)
(Ⅱ)解法一:作FG⊥BC,垂足為G,連接EG,
∵EF⊥平面ABC,∴EF⊥BC,又EF∩FG=F,
∴BC⊥平面EFG,∴EG⊥BC,
∴∠EGF就是二面角E-BC-A的平面角.…(9分)
Rt△EFG中,FG=FB•sin30°=
1
2
,EF=
3
,EG=
13
2

cos∠EGF=
FG
EG
=
13
13

即二面角E-BC-A的余弦值為
13
13
.…(12分)
解法二:建立如圖所示的空間直角坐標系O-xyz,
B(0,
3
,0),C(-1,0,0),E(0,
3
-1
,
3
),
BC
=(-1,-
3
,0),
BE
=(0,-1,
3
),
平面ABC的一個法向量為
n1
=(0,0,1)

設(shè)平面BCE的一個法向量為
n2
=(x,y,z)

n2
BC
=0
n2
BE
=0
,∴
-x-
3
y=0
-y-
3
z=0

n2
=(-3,
3
,1)
.…(9分)
所以cos<
n1
n2
>=
n1
n2
|
n1
|•|
n2
|
=
13
13
,
又由圖知,所求二面角的平面角是銳角,
二面角E-BC-A的余弦值為
13
13
.…(12分)
點評:本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養(yǎng),注意向量法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2sin(
π
8
x+
π
4
)(-2<x<14)的圖象與x軸交于點A,過點A的直線l與函數(shù)的圖象交于B、C兩點,則(
OB
+
OC
)•
OA
=(其中O為坐標原點)(  )
A、-32B、32
C、-72D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln(x+1)與y=
1
x
的圖象交點的橫坐標所在區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E是棱DD1上的動點,F(xiàn),G分別是BD,BB1的中點.
(1)求證:EF⊥CF.
(2)當(dāng)點E是棱DD1上的中點時,求異面直線EF與CG所成角的余弦值.
(3)當(dāng)二面角E-CF-D達到最大時,求其余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若點E是線段DB上的一動點,問點E在何位置時,二面角E-AM-D的余弦值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖直角梯形OABC中,∠COA=∠OAB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分別以O(shè)C,OA,OS為x軸、y軸、z軸建立直角坐標系O-xyz.
(Ⅰ)求
SC
OB
夾角的余弦值;
(Ⅱ)求OC與平面SBC夾角的正弦值;
(Ⅲ)求二面角S-BC-O.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=t,a2=t2,其中t>0且t≠1,x=
t
是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一個極值點.
(Ⅰ)證明:數(shù)列{an+1-an}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)設(shè)bn=anlogtan,數(shù)列{bn}的前n項和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠C=90°,AC=BC=a,點P在邊AB上,設(shè)
AP
PB
(λ>0),過點P作PE∥BC交AC于E,作PF∥AC交BC于F.沿PE將△APE翻折成△A′PE使平面A′PE⊥平面ABC;沿PE將△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(1)求證:B′C∥平面A′PE;
(2)是否存在正實數(shù)λ,使得二面角C-A′B′-P的大小為90°?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,A、B是橢圓的左、右頂點,F(xiàn)是橢圓的左焦點,點P是橢圓上的動點.其中,|PF|的最小值是2-
2
,△PFA的面積最大值是
2
-1

(Ⅰ)求該橢圓的方程;
(Ⅱ)如圖,直線BM⊥AB,BM交AP于M,OM交BP于N,求點N到點Q(0,2)的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案