在△ABC中,
BC
AC
,|
AC
|=4,則
AB
AC
=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:計(jì)算題,平面向量及應(yīng)用
分析:根據(jù)向量的加法把向量
AB
用向量
AC
CB
表示:
AB
=
AC
+
CB
,然后再與向量
AC
求數(shù)量積.
解答: 解:
AB
AC
=(
AC
+
CB
)•
AC

=
AC
2
+
CB
AC

BC
AC
,∴
CB
AC
=0

∵|
AC
|=4,∴
AC
2
=16

AC
2
+
CB
AC
=16
故答案為:16.
點(diǎn)評(píng):本題考查了向量的運(yùn)算,解題的關(guān)鍵是把向量
AB
用向量
AC
CB
表示.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了檢驗(yàn)主修統(tǒng)計(jì)專(zhuān)業(yè)是否與性別有關(guān),某高!敖y(tǒng)計(jì)初步”課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生情況,具體數(shù)據(jù)如下表:
非統(tǒng)計(jì)專(zhuān)業(yè) 統(tǒng)計(jì)專(zhuān)業(yè)
 男生 14 10
 女生 6 20
(1)分別計(jì)算男生、女生主修統(tǒng)計(jì)專(zhuān)業(yè)的百分比,并求K2的值;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為主修統(tǒng)計(jì)專(zhuān)業(yè)與性別有關(guān)?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
.(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)an是(1-
x
n的展開(kāi)式中x項(xiàng)的系數(shù)(n=2,3,4,…),若bn=
an+1
(n+7)
a
 
n+2
,則bn的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式
ax2+2x-3
ax-1
<0的解集為M,若2∉M,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

中心在原點(diǎn),焦點(diǎn)坐標(biāo)為(0,5
2
)的橢圓被直線(xiàn)3x-y-2=0截得的弦的中點(diǎn)的橫坐標(biāo)為
1
2
,則橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x3-3x在點(diǎn)(1,-2)處的切線(xiàn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(α-
π
6
)=-
3
5
,0<α<π,則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二元一次方程組
x+y=6
-x+y=1
,則Dy的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=2+3i(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案