【題目】已知橢圓,是它的上頂點,點各不相同且均在橢圓上.
(1)若恰為橢圓長軸的兩個端點,求的面積;
(2)若,求證:直線過一定點;
(3)若,的外接圓半徑為,求的值.
【答案】(1)2(2)證明見解析(3)
【解析】
(1)求得,由三角形的面積公式,即可求解面積;
(2)設(shè),聯(lián)立方程組,求得,又由,求得,得到,即可得到答案.
(3)由題意得:,求得線段的中垂線方程,求得外接圓圓心的縱坐標(biāo)為,即可求解.
(1)由題意,橢圓,可得,
故的面積為.
(2)根椐對稱性,定點必在軸上,利用特殊值可計算得定點為,
設(shè),,,
聯(lián)立方程組,整理得,
可得,
因為,所,即,
可得,
即,
可得,又因為,所以,
所以,可得必過定點.
(3)易知是等腰三角形,外接圓圓心在軸上,
由題意得:,
線段的中垂線為:
故外接圓圓心的縱坐標(biāo)為:,所以,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】劉徽《九章算術(shù)商功》中將底面為長方形,兩個三角面與底面垂直的四棱錐體叫做陽馬.如圖,是一個陽馬的三視圖,則其外接球的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐P–ABC中,PA⊥平面ABC,D是棱PB的中點,已知PA=BC=2,AB=4,CB⊥AB,則異面直線PC,AD所成角的余弦值為
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,為的中點,將沿直線翻折成,連結(jié),為的中點,則在翻折過程中,下列說法中所有正確的是( )
A.存在某個位置,使得
B.翻折過程中,的長是定值
C.若,則
D.若,當(dāng)三棱錐的體積最大時,三棱錐的外接球的表面積是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,動直線過定點且交橢圓于,兩點(,不在軸上).
(1)若線段中點的縱坐標(biāo)是,求直線的方程;
(2)記點關(guān)于軸的對稱點為,若點滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),定義函數(shù),給出下列命題:①;②函數(shù)是奇函數(shù);③當(dāng)時,若,,總有成立,其中所有正確命題的序號是( )
A.②B.①②C.③D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將四個面都為直角三角形的四面體稱為鱉臑.如圖,四棱錐中,底面為平行四邊形,,,底面.
(1)求證:平面.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(2)若,求點A到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次數(shù)學(xué)考試中,從甲乙兩個班各抽取10名學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計分析,兩個班樣本成績的莖葉圖如圖所示.
(1)用樣本估計總體,若根據(jù)莖葉圖計算得甲乙兩個班級的平均分相同,求的值;
(2)從樣本中任意抽取3名學(xué)生的成績,若至少有兩名學(xué)生的成績相同的概率大于,則該班成績判斷為可疑.試判斷甲班的成績是否可疑?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com