(2006•海淀區(qū)一模)若點P(3,-1)為圓(x-2)2+y2=25的弦AB的中點,則直線AB的方程為(  )
分析:設(shè)圓心C(2,0),連接PC,由P(3,-1)為圓的弦的中點可得AB⊥PC,由KPC=
0+1
2-3
=-1
  可求KAB=1,從而 可求直線AB的方程.
解答:解:設(shè)圓心C(2,0),連接PC
由P(3,-1)為圓的弦的中點可得AB⊥PC
KPC=
0+1
2-3
=-1
∴KAB=1
直線AB的方程為x-y-4=0
故選D.
點評:本題主要考查了利用直線垂直關(guān)系求解直線的斜率,主要應(yīng)用了圓的性質(zhì):垂直于(平分)弦的直徑平分(垂直于)弦
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)一模)設(shè)全集U={1,2,3,4,5},集合M={1,3,5},集合N={3,4,5},則集合(CUM)∩N等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)一模)i是虛數(shù)單位,復(fù)數(shù)z=
(1+i)2
1-i
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)一模)函數(shù)f(x)=loga(3x-1)(a>0,a≠1)的反函數(shù)的圖象過定點( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)一模)已知四棱錐P-ABCD的底面是菱形,∠BCD=60°,PD⊥AD,點E是BC邊的中點,
(Ⅰ)求證:AD⊥平面PDE;
(Ⅱ)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
,
①求點P到平面ABCD的距離;
②求二面角P-AB-C的大。

查看答案和解析>>

同步練習(xí)冊答案