【題目】我國古代數(shù)學名著《數(shù)書九章》中有天池盆測雨題,大概意思如下:在下雨時,用一個圓臺形的天池盆接雨水,天池盆盆口直徑為28寸,盆底直徑為12寸,盆深18.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸;③臺體的體積)(

A.3B.4C.5D.6

【答案】A

【解析】

作出圓臺的軸截面,根據(jù)已知條件,利用圓臺體積公式可求得盆中積水體積,再求出盆口面積,根據(jù)平均降水量的定義可求得結(jié)果.

作出圓臺的軸截面如圖所示:

由題意知,寸,寸,寸,,

的中點,

為梯形的中位線,

寸,即積水的上底面半徑為,

盆中積水的體積為(立方寸),

又盆口的面積為(平方寸),

平均降雨量是,即平均降雨量是3,

故選:A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,為圓錐的頂點,是圓錐底面的圓心,是底面的內(nèi)接正三角形,上一點,∠APC=90°

1)證明:平面PAB⊥平面PAC

2)設DO=,圓錐的側(cè)面積為,求三棱錐PABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生興趣小組隨機調(diào)查了某市100天中每天的空氣質(zhì)量等級和當天到某公園鍛煉的人次,整理數(shù)據(jù)得到下表(單位:天):

鍛煉人次

空氣質(zhì)量等級

[0,200]

(200400]

(400,600]

1(優(yōu))

2

16

25

2(良)

5

10

12

3(輕度污染)

6

7

8

4(中度污染)

7

2

0

1)分別估計該市一天的空氣質(zhì)量等級為12,3,4的概率;

2)求一天中到該公園鍛煉的平均人次的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);

3)若某天的空氣質(zhì)量等級為12,則稱這天空氣質(zhì)量好;若某天的空氣質(zhì)量等級為34,則稱這天空氣質(zhì)量不好.根據(jù)所給數(shù)據(jù),完成下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表,判斷是否有95%的把握認為一天中到該公園鍛煉的人次與該市當天的空氣質(zhì)量有關(guān)?

人次≤400

人次>400

空氣質(zhì)量好

空氣質(zhì)量不好

附:,

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當時,,給出下列命題:

①當時,;

②函數(shù)2個零點;

的解集為;

,都有.

其中真命題的個數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)購已經(jīng)成為我們?nèi)粘I钪械囊徊糠,某地區(qū)隨機調(diào)查了100名男性和100名女性在雙十一活動中用于網(wǎng)購的消費金額,數(shù)據(jù)整理如下:

男性消費金額頻數(shù)分布表

消費金額

(單位:元)

0~500

500~1000

1000~1500

1500~2000

2000~3000

人數(shù)

15

15

20

30

20

1)試分別計算男性、女性在此活動中的平均消費金額;

2)如果分別把男性、女性消費金額與中位數(shù)相差不超過200元的消費稱作理性消費,試問是否有5成以上的把握認為理性消費與性別有關(guān).

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十五巧板、又稱益智圖,為清朝浙江省德清知縣童葉庚在同治年間所發(fā)明,它能拼出草木、花果、鳥獸、魚蟲、文字等圖案.十五巧板由十五塊板組成一個大正方形(如圖1),其中標號為2,34,5的小板均為等腰直角三角形,圖2是用十五巧板拼出的2019年生肖豬的圖案,則從生肖豬圖案中任取一點,該點恰好取自陰影部分中的概率為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個正方形ABCDCDEF有一條公共邊CD,且BCF是等邊三角形,則異面直線ACDF所成角的余弦值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓過點,離心率為,分別是橢圓的左、右頂點,過右焦點且斜率為的直線與橢圓相交于兩點.

1)求橢圓的標準方程;

2)記的面積分別為、,若,求的值;

3)記直線的斜率分別為、,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率e滿足,以坐標原點為圓心,橢圓C的長軸長為半徑的圓與直線相切.

1)求橢圓C的方程;

2)過點P(0,1)的動直線(直線的斜率存在)與橢圓C相交于A,B兩點,問在y軸上是否存在與點P不同的定點Q,使得恒成立?若存在,求出定點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案