【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),,給出下列命題:
①當(dāng)時(shí),;
②函數(shù)有2個(gè)零點(diǎn);
③的解集為;
④,,都有.
其中真命題的個(gè)數(shù)為( )
A.4B.3C.2D.1
【答案】C
【解析】
對(duì)于①,利用函數(shù)是定義在R上的奇函數(shù)求解即可;對(duì)于②,由函數(shù)解析式及函數(shù)為奇函數(shù)求解即可;對(duì)于③,分別解當(dāng)時(shí),當(dāng)時(shí),即可得解;對(duì)于④,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再求值域即可得解.
解:對(duì)于①,函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),,則當(dāng)時(shí),,即①錯(cuò)誤;
對(duì)于②,由題意可得,即函數(shù)有3個(gè)零點(diǎn),即②錯(cuò)誤;
對(duì)于③,當(dāng)時(shí),,令,解得,當(dāng)時(shí),,令,解得,綜上可得的解集為,即③正確;
對(duì)于④,當(dāng)時(shí),,,令,得,令,得,即函數(shù)在為減函數(shù),在為增函數(shù),即函數(shù)在的最小值為,且時(shí),,又,則,由函數(shù)為奇函數(shù)可得當(dāng)時(shí),,又,即函數(shù)的值域?yàn)?/span>,即,,都有,即④正確,
即真命題的個(gè)數(shù)為2,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點(diǎn),且,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
Ⅰ當(dāng)時(shí),取得極值,求的值并判斷是極大值點(diǎn)還是極小值點(diǎn);
Ⅱ當(dāng)函數(shù)有兩個(gè)極值點(diǎn),,且時(shí),總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知經(jīng)過圓上點(diǎn)的切線方程是.
(1)類比上述性質(zhì),直接寫出經(jīng)過橢圓上一點(diǎn)的切線方程;
(2)已知橢圓,P為直線上的動(dòng)點(diǎn),過P作橢圓E的兩條切線,切點(diǎn)分別為AB,
①求證:直線AB過定點(diǎn).
②當(dāng)點(diǎn)P到直線AB的距離為時(shí),求三角形PAB的外接圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實(shí)國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民收入也逐年增加.為了更好的制定2019年關(guān)于加快提升農(nóng)民年收入力爭早日脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了2018年50位農(nóng)民的年收入并制成如下頻率分布直方圖:
附:參考數(shù)據(jù)與公式 ,若 ,則① ;② ;③ .
(1)根據(jù)頻率分布直方圖估計(jì)50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);
(2)由頻率分布直方圖可以認(rèn)為該貧困地區(qū)農(nóng)民年收入 X 服從正態(tài)分布 ,其中近似為年平均收入 近似為樣本方差 ,經(jīng)計(jì)算得:,利用該正態(tài)分布,求:
(i)在2019年脫貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的84.14%的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?
(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪了1000位農(nóng)民.若每個(gè)農(nóng)民的年收入相互獨(dú)立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在校園籃球賽中,甲、乙兩個(gè)隊(duì)10場比賽的得分?jǐn)?shù)據(jù)整理成如圖所示的莖葉圖,下列說法正確的是( )
A.乙隊(duì)得分的中位數(shù)是38.5
B.甲、乙兩隊(duì)得分在分?jǐn)?shù)段頻率相等
C.乙隊(duì)的平均得分比甲隊(duì)的高
D.甲隊(duì)得分的穩(wěn)定性比乙隊(duì)好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題,大概意思如下:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為1尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸;③臺(tái)體的體積)( )
A.3寸B.4寸C.5寸D.6寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年寒假期間,某高中決定深入調(diào)查本校學(xué)生寒假期間在家學(xué)習(xí)情況,并將依據(jù)調(diào)查結(jié)果對(duì)相應(yīng)學(xué)生提出針對(duì)性學(xué)習(xí)建議.現(xiàn)從本校高一、高二、高三三個(gè)年級(jí)中分別隨機(jī)選取30,45,75人,然后再從這些學(xué)生中抽取10人,進(jìn)行學(xué)情調(diào)查.
(1)若采用分層抽樣抽取10人,分別求高一、高二、高三應(yīng)抽取的人數(shù).
(2)若被抽取的10人中,有6人每天學(xué)時(shí)超過7小時(shí),有4人每天學(xué)時(shí)不足4小時(shí),現(xiàn)從這10人中,再隨機(jī)抽取4人做進(jìn)一步調(diào)查.
(i)記事件A為“被抽取的4人中至多有1人學(xué)時(shí)不足4小時(shí)”,求事件A發(fā)生的概率;
(ii)用ξ表示被抽取的4人中學(xué)時(shí)不足4小時(shí)的人數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),圓C的標(biāo)準(zhǔn)方程為以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
求直線l和圓C的極坐標(biāo)方程;
若射線與l的交點(diǎn)為M,與圓C的交點(diǎn)為A,B,且點(diǎn)M恰好為線段AB的中點(diǎn),求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com