【題目】2020年寒假期間,某高中決定深入調(diào)查本校學(xué)生寒假期間在家學(xué)習(xí)情況,并將依據(jù)調(diào)查結(jié)果對相應(yīng)學(xué)生提出針對性學(xué)習(xí)建議.現(xiàn)從本校高一、高二、高三三個年級中分別隨機選取30,45,75人,然后再從這些學(xué)生中抽取10人,進行學(xué)情調(diào)查.
(1)若采用分層抽樣抽取10人,分別求高一、高二、高三應(yīng)抽取的人數(shù).
(2)若被抽取的10人中,有6人每天學(xué)時超過7小時,有4人每天學(xué)時不足4小時,現(xiàn)從這10人中,再隨機抽取4人做進一步調(diào)查.
(i)記事件A為“被抽取的4人中至多有1人學(xué)時不足4小時”,求事件A發(fā)生的概率;
(ii)用ξ表示被抽取的4人中學(xué)時不足4小時的人數(shù),求隨機變量ξ的分布列和數(shù)學(xué)期望.
【答案】(1)高一、高二、高三應(yīng)抽取的人數(shù)分別為2人,3人,5人;(2)(i);(ii)見解析,
【解析】
(1)總數(shù)為30+45+75=150,從這些學(xué)生中抽取10人,根據(jù)分層抽樣法求出高一、高二、高三應(yīng)抽取的人數(shù)即可;
(2)(i)記事件A為“被抽取的4人中至多有1人學(xué)時不足4小時”,記事件B為“被抽取的4人中恰有1人學(xué)時不足4小時”,記事件C為“被抽取的4人中恰有0人學(xué)時不足4小時”,則由P(A)=P(B∪C)=P(B)+P(C),求出概率即可;
(ii)隨機變量ξ表示被抽取的4人中學(xué)時不足4小時的人數(shù),則ξ=0,1,2,3,4,求出隨機變量ξ的分布列和數(shù)學(xué)期望即可.
(1)從本校高一、高二、高三三個年級中分別隨機選取30,45,75人,
30+45+75=150,
從這些學(xué)生中抽取10人,根據(jù)分層抽樣法,高一應(yīng)抽取102人,高二應(yīng)抽取10人,高三應(yīng)抽取10人,
故高一、高二、高三應(yīng)抽取的人數(shù)分別為2人,3人,5人;
(2)(i)記事件A為“被抽取的4人中至多有1人學(xué)時不足4小時”,記事件B為“被抽取的4人中恰有1人學(xué)時不足4小時”,記事件C為“被抽取的4人中恰有0人學(xué)時不足4小時”,則P(A)=P(B∪C)=P(B)+P(C);
(ii)隨機變量ξ表示被抽取的4人中學(xué)時不足4小時的人數(shù),則ξ=0,1,2,3,4,
則,,
,,
,
隨機變量ξ的分布列如下:
ξ | 0 | 1 | 2 | 3 | 4 |
P |
|
|
E(ξ).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱ABC-A1B1C1的底面是正三角形,側(cè)面BB1C1C是矩形,M,N分別為BC,B1C1的中點,P為AM上一點,過B1C1和P的平面交AB于E,交AC于F.
(1)證明:AA1∥MN,且平面A1AMN⊥EB1C1F;
(2)設(shè)O為△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直線B1E與平面A1AMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,給出下列命題:
①當(dāng)時,;
②函數(shù)有2個零點;
③的解集為;
④,,都有.
其中真命題的個數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十五巧板、又稱益智圖,為清朝浙江省德清知縣童葉庚在同治年間所發(fā)明,它能拼出草木、花果、鳥獸、魚蟲、文字等圖案.十五巧板由十五塊板組成一個大正方形(如圖1),其中標(biāo)號為2,3,4,5的小板均為等腰直角三角形,圖2是用十五巧板拼出的2019年生肖豬的圖案,則從生肖豬圖案中任取一點,該點恰好取自陰影部分中的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個正方形ABCD和CDEF有一條公共邊CD,且△BCF是等邊三角形,則異面直線AC和DF所成角的余弦值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+2|+|x﹣3|.
(1)求不等式f(x)≥8的解集;
(2)若a>0,b>0,且函數(shù)F(x)=f(x)﹣3a﹣2b有唯一零點x0,證明:f(x0).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓過點,離心率為,分別是橢圓的左、右頂點,過右焦點且斜率為的直線與橢圓相交于兩點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記、的面積分別為、,若,求的值;
(3)記直線、的斜率分別為、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者.為及時有效地對疫情數(shù)據(jù)進行流行病學(xué)統(tǒng)計分析,某地研究機構(gòu)針對該地實際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關(guān)數(shù)據(jù).
(1)請將列聯(lián)表填寫完整:
有接觸史 | 無接觸史 | 總計 | |
有武漢旅行史 | 27 | ||
無武漢旅行史 | 18 | ||
總計 | 27 | 54 |
(2)能否在犯錯誤的概率不超過0.025的前提下認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象如圖所示,給出四個函數(shù):①,②,③,④,又給出四個函數(shù)的圖象,則正確的匹配方案是( ).
A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙
C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com