16.求函數(shù)f(x)=sin(2x-$\frac{π}{4}$)在區(qū)間[0,$\frac{π}{2}}$]上的最小值.

分析 由x∈[0,$\frac{π}{2}}$],則2x-$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$],由正弦函數(shù)的圖象及性質可知:f(x)=sin(2x-$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],當2x-$\frac{π}{4}$=-$\frac{π}{4}$,即x=0時,f(x)=sin(2x-$\frac{π}{4}$)取最小值-$\frac{\sqrt{2}}{2}$.

解答 解:由題意可知:x∈[0,$\frac{π}{2}}$],
則2x-$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$],
∴f(x)=sin(2x-$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],
∴當2x-$\frac{π}{4}$=-$\frac{π}{4}$,即x=0時,f(x)=sin(2x-$\frac{π}{4}$)取最小值-$\frac{\sqrt{2}}{2}$,
∴函數(shù)f(x)=sin(2x-$\frac{π}{4}$)在區(qū)間[0,$\frac{π}{2}}$]上的最小值-$\frac{\sqrt{2}}{2}$.

點評 本題考查正弦函數(shù)的圖象及性質,考查正弦函數(shù)在閉區(qū)間上的最值,考查學生對學生對正弦函數(shù)圖象的掌握程度,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知正項數(shù)列{an}的前n項和為Sn,且Sn是${a_n}^2$和an的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設${b_n}={a_n}•{2^{2{a_n}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)計算${({lg2})^2}+lg5•lg20+{({\sqrt{2016}})^0}+{0.027^{\frac{2}{3}}}×{({\frac{1}{3}})^{-2}}$;
(2)已知$\frac{3tanα}{tanα-2}=-1$,求$\frac{7}{{{{sin}^2}α+sinα•cosα+{{cos}^2}α}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設點集M={(x,y)|xcosθ+ysinθ-sinθ-1=0(0≤θ≤2π)},集合M在坐標平面xoy內(nèi)形成區(qū)域的邊界構成曲線C,曲線C的中心為T,圓N:(x-2-5cosθ)2+(y-5sinθ)2=1,過圓N上任一點P分別作曲線C的兩切線PE,PF,切點分別為E,F(xiàn),則$\overrightarrow{TE}•\overrightarrow{TF}$的范圍為[-$\frac{\sqrt{5}+1}{4}$,$\frac{\sqrt{5}-1}{4}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.(1)求經(jīng)過兩直線l1:2x-3y-3=0和l2:x+y+2=0的交點且與直線l:3x+y-1=0垂直的直線方程;
(2)若兩平行直線l1:2x+y-4=0和l2:y=-2x-k-2的距離不大于$\sqrt{5}$,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知P(x,y)是不等式組$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y+3≥0}\\{x≤0}\end{array}\right.$,表示的平面區(qū)域內(nèi)的一點,A(1,2),O為坐標原點,則$\overrightarrow{OA}•\overrightarrow{OP}$的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.求(1-x)3(2x2+1)5的展開式中x2項的系數(shù)13.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\begin{array}{l}\left\{\begin{array}{l}x=1+\sqrt{3}cosθ\\ y=\sqrt{3}sinθ\end{array}\right.\end{array}$(其中θ為參數(shù)),點M是曲線C1上的動點,點P在曲線C2上,且滿足$\overrightarrow{OP}$=2$\overrightarrow{OM}$.
(Ⅰ)求曲線C2的普通方程;
(Ⅱ)以原點O為極點,x軸的正半軸為極軸建立極坐標系,射線θ=$\frac{2π}{3}$與曲線C1、C2分別交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖所示的程序框圖,輸出的W=22.

查看答案和解析>>

同步練習冊答案