分析 求出曲線C是以T(0,1)為圓心,以1為半徑的圓,設(shè)出∠EPF,求數(shù)量積的表達(dá)式,然后求PT的范圍,結(jié)合數(shù)量積,求其最值.
解答 解:∵點(diǎn)T(0,1)到直線xcosθ+ysinθ-sinθ-1=0的距離d=$\frac{|sinθ-sinθ-1|}{\sqrt{co{s}^{2}θ+si{n}^{2}θ}}=1$,
∴曲線C是以T(0,1)為圓心,以1為半徑的圓,
設(shè)∠EPF=2α
則$\overrightarrow{TE}•\overrightarrow{TF}$=1×1×cos2α=2cos2α-1,
在 Rt△PTE中,cosα=$\frac{1}{|PT|}$
由圓的幾何性質(zhì)得$\sqrt{5}$-1≤|PT|≤$\sqrt{5}$+1,
∴$\frac{\sqrt{5}-1}{4}$≤cosα≤$\frac{\sqrt{5}+1}{4}$,由此可得-$\frac{\sqrt{5}+1}{4}$≤$\overrightarrow{TE}•\overrightarrow{TF}$≤$\frac{\sqrt{5}-1}{4}$,
故答案為:[-$\frac{\sqrt{5}+1}{4}$,$\frac{\sqrt{5}-1}{4}$]
點(diǎn)評(píng) 本題主要考查求軌跡方程,考查平面向量的數(shù)量積的運(yùn)算,圓的標(biāo)準(zhǔn)方程,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 4 | C. | $\frac{25}{3}$ | D. | -$\frac{7}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
x | -1 | 0 | 2 | 4 | 5 |
y | 1 | 2 | 0 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com