【題目】已知離心率為的橢圓的左頂點(diǎn)為,且橢圓經(jīng)過(guò)點(diǎn),與坐標(biāo)軸不垂直的直線與橢圓交于兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線和直線的斜率之積為,求證:直線過(guò)定點(diǎn);
(3)若為橢圓上一點(diǎn),且,求三角形的面積.
【答案】(1);(2)證明見(jiàn)解析;(3).
【解析】
(1)根據(jù)離心率,將用表示,橢圓方程化為,點(diǎn)代入方程,即可求出橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)的方程為,(或),設(shè),將直線方程與橢圓方程聯(lián)立,消元得到,由,得,且,,,整理得,或(舍),滿足,可得直線過(guò)定點(diǎn)
(3),根據(jù)向量的關(guān)系可得,點(diǎn)到直線距離,即可求解;或?qū)⒏鶕?jù)橢圓的參數(shù)方程,設(shè),,,求得點(diǎn),又點(diǎn)在橢圓上,整理可得,將用表示,并化簡(jiǎn)為,即可求得結(jié)論.
(1)∵,∴,∴,又∵橢圓經(jīng)過(guò)點(diǎn),
∴,∴橢圓的標(biāo)準(zhǔn)方程為;
(2)方法一:的方程為,設(shè),
聯(lián)立方程組,化簡(jiǎn)得,
由解得,且,,
∴,
∴,
,
化簡(jiǎn)可得:,∴或(舍),滿足,
∴直線的方程為,
∴直線經(jīng)過(guò)定點(diǎn).
方法二:設(shè)的方程為,設(shè),
聯(lián)立方程組,化簡(jiǎn)得,
解得:,且,,
∵,
∴,
∴,
化簡(jiǎn)可得:,∴或者(舍)滿足
∴直線經(jīng)過(guò)定點(diǎn);
方法三:設(shè),則有,∴,
設(shè)方程為,∴,
∴,∴,∴,
∴,∴,∴,
∴直線經(jīng)過(guò)定點(diǎn);
(3)點(diǎn)到直線距離,
∴,∴;
方法二:設(shè),
∵,∴點(diǎn),
又∵點(diǎn)在橢圓上,∴,
∴.
,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和為,在同一個(gè)坐標(biāo)系中,及的部分圖象如圖所示,則( ).
A. 當(dāng)時(shí),取得最大值 B. 當(dāng)時(shí),取得最大值
C. 當(dāng)時(shí),取得最小值 D. 當(dāng)時(shí),取得最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集,關(guān)于的不等式()的解集為.
(1)求集合;
(2)設(shè)集合,若 中有且只有三個(gè)元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)有十二生肖,又叫十二屬相,每一個(gè)人的出生年份對(duì)應(yīng)了十二種動(dòng)物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)的一種,現(xiàn)有十二生肖的吉物各一個(gè),甲、乙、丙三位同學(xué)依次選一個(gè)作為禮物,甲同學(xué)喜歡牛和馬,乙同學(xué)喜歡牛、兔、狗和羊,丙同學(xué)哪個(gè)吉祥物都喜歡,如果讓三位同學(xué)選取的禮物都滿意,那么不同的選法有( )
A. 50種B. 60種C. 70種D. 90種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒(méi)有發(fā)生大規(guī)模群體感染的標(biāo)志是“連續(xù)10日,每天新增疑似病例不超過(guò)7人”.過(guò)去10日,甲、乙、丙、丁四地新增疑似病例數(shù)據(jù)信息如下:
甲地:總體平均數(shù)為3,中位數(shù)為4;
乙地:總體平均數(shù)為1,總體方差大于0;
丙地:總體平均數(shù)為2,總體方差為3;
丁地:中位數(shù)為2,眾數(shù)為3;
則甲、乙、兩、丁四地中,一定沒(méi)有發(fā)生大規(guī)模群體感染的是( )
A.甲地B.乙地C.丙地D.丁地
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),.
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)已知函數(shù)在上為增函數(shù),且,若在上至少存在一個(gè)實(shí)數(shù),使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則的值為( 。
A. 5032 B. 5044 C. 5048 D. 5050
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線交曲線于,兩點(diǎn),交曲線于,兩點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,射線的普通方程為,曲線的參數(shù)方程為(為參數(shù)).以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出與的極坐標(biāo)方程;
(2)設(shè)與的交點(diǎn)為P(點(diǎn)P不為極點(diǎn)),與的交點(diǎn)為Q,當(dāng)在上變化時(shí),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com