【題目】已知在三棱錐中,分別是的中點(diǎn),都是正三角形,.
(1)求證:平面;
(2)求二面角的平面角的余弦值;
(3)若點(diǎn)在一個(gè)表面積為的球面上,求的邊長(zhǎng).
【答案】(1)證明過(guò)程見(jiàn)解析;(2)(3).
【解析】試題分析:(1)連接,由,是正三角形且,為、的中點(diǎn)可得,可得①,由已知易證面,從而可得,利用線(xiàn)面垂直的判定定理可證;(2)由,可得, 為所求的二面角,由(1)可得為直角三角形,中,求解即可;(3)由題意可求的外接球的半徑,由(2)得(a為的邊長(zhǎng))且 為等腰直角三角形,故而可求得結(jié)果.
試題解析:(1)證明:連接,
因?yàn)樵诘冗?/span>中, 為中點(diǎn),所以.
因?yàn)?/span>,,.
所以平面,
又平面,所以,
在中,為邊上的中線(xiàn),
又,
所以為直角三角形,且.
因?yàn)?/span>,,,
所以平面.
(2)解:由(1)可知, 為所求二面角的平面角.
設(shè),則,,
在直角三角形中,.
(3)解:設(shè)球半徑為,則,所以.
設(shè)的邊長(zhǎng)為,
因?yàn)?/span>平面,平面
所以,,
且由(2)知,.
因?yàn)?/span>,
所以為直角三角形,且,,
所以,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一個(gè)直角三角形繞斜邊所在直線(xiàn)旋轉(zhuǎn)一周,所得的幾何體為( )
A.一個(gè)圓臺(tái)B.兩個(gè)圓錐C.一個(gè)圓柱D.一個(gè)圓錐
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】結(jié)構(gòu)圖中其基本要素之間的關(guān)系一般為( )
A.上位與下位關(guān)系B.遞進(jìn)關(guān)系C.從屬關(guān)系或邏輯關(guān)系D.沒(méi)有直接關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lg(1+x)﹣lg(1﹣x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由;
(3)若f(x)>0,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B在AM上,D在AN上,且對(duì)角線(xiàn)MN過(guò)C點(diǎn),已知|AB|=3米,|AD|=2米
(1)設(shè)AN的長(zhǎng)為x米,用x表示矩形AMPN的面積?
(2)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(且,),是定義域是的奇函數(shù).
(1)求的值,判斷并證明當(dāng)時(shí),函數(shù)在上的單調(diào)性;
(2)已知,函數(shù),,求的值域;
(3)已知,若對(duì)于時(shí)恒成立,請(qǐng)求出最大的整數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最小值和最大值;
(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(3)是否存在實(shí)數(shù),對(duì)任意的,且,都有恒成立,若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-1:幾何證明選講
如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線(xiàn),弦CD∥AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且DE2=EF·EC
(1)求證:P=EDF;
(2)求證:CE·EB=EF·EP.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某種商品每日的銷(xiāo)售量y(單位:噸)與銷(xiāo)售價(jià)格x(單位:萬(wàn)元/噸,1<x≤5)滿(mǎn)足:當(dāng)1<x≤3時(shí),y=a(x﹣4)2 +(a為常數(shù));當(dāng)3<x≤5時(shí),y=kx+7(k<0),已知當(dāng)銷(xiāo)售價(jià)格為3萬(wàn)元/噸時(shí),每日可售出該商品4噸,且銷(xiāo)售價(jià)格x∈(3,5]變化時(shí),銷(xiāo)售量最低為2噸.
(1)求a,k的值,并確定y關(guān)于x的函數(shù)解析式;
(2)若該商品的銷(xiāo)售成本為1萬(wàn)元/噸,試確定銷(xiāo)售價(jià)格x的值,使得每日銷(xiāo)售該商品所獲利潤(rùn)最大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com