【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓,直線,直線過(guò)點(diǎn),傾斜角為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)寫出直線與圓的交點(diǎn)極坐標(biāo)及直線的參數(shù)方程;

(2)設(shè)直線與圓交于,兩點(diǎn),求的值.

【答案】(1)(2)1

【解析】

1)先解出交點(diǎn)的直角坐標(biāo),再轉(zhuǎn)化成極坐標(biāo);由題直線過(guò)點(diǎn),傾斜角為,直線的參數(shù)方程為為參數(shù))

2)將的參數(shù)方程代入圓的普通方程,結(jié)合韋達(dá)定理與參數(shù)的幾何意義求解。

解:(1)聯(lián)立方程 ,

解得,.

所以當(dāng)時(shí),;

當(dāng)時(shí),

所以交點(diǎn)的直角坐標(biāo)分別為,,

則對(duì)應(yīng)的極坐標(biāo)為,.

由題得,直線的參數(shù)方程為為參數(shù)).

(2)將的參數(shù)方程代入圓的方程中,

,

化簡(jiǎn)整理,得,且

設(shè)點(diǎn),分別對(duì)應(yīng)參數(shù),,

所以,

又由,的幾何意義可知,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)一動(dòng)點(diǎn))到點(diǎn)的距離與點(diǎn)軸的距離的差等于1,

1)求動(dòng)點(diǎn)的軌跡的方程;

2)過(guò)點(diǎn)的直線與軌跡相交于不同于坐標(biāo)原點(diǎn)的兩點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,某地認(rèn)真貫徹落實(shí)中央十九大精神和各項(xiàng)宏觀調(diào)控政策,經(jīng)濟(jì)運(yùn)行平穩(wěn)增長(zhǎng),民生保障持續(xù)加強(qiáng),惠民富民成效顯著,城鎮(zhèn)居民收入穩(wěn)步增長(zhǎng),收入結(jié)構(gòu)穩(wěn)中趨優(yōu).據(jù)當(dāng)?shù)亟y(tǒng)計(jì)局公布的數(shù)據(jù),現(xiàn)將8月份至12月份當(dāng)?shù)氐娜司率杖朐鲩L(zhǎng)率如圖(一)與人均月收入繪制成如圖(二)所示的不完整的條形統(tǒng)計(jì)圖.現(xiàn)給出如下信息:

①10月份人均月收入增長(zhǎng)率為

②11月份人均月收入約為1442元;

③12月份人均月收入有所下降;

④從上圖可知該地9月份至12月份這四個(gè)月與8月份相比人均月收入均得到提高.

其中正確的信息個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,左頂點(diǎn)為.過(guò)點(diǎn)作直線交橢圓于另一點(diǎn),交軸于點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn).

1)求橢圓的方程:

2)已知的中點(diǎn),是否存在定點(diǎn),對(duì)任意的直線,恒成立?若存在,求出點(diǎn)的坐標(biāo);若不存在說(shuō)明理由;

3)過(guò)點(diǎn)作直線的平行線與橢圓相交,為其中一個(gè)交點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)平面向量分解定理的四個(gè)命題:

1)一個(gè)平面內(nèi)有且只有一對(duì)不平行的向量可作為表示該平面所有向量的基;

2)一個(gè)平面內(nèi)有無(wú)數(shù)多對(duì)不平行向量可作為表示該平面內(nèi)所有向量的基;

3)平面向量的基向量可能互相垂直;

4)一個(gè)平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個(gè)互不平行向量的線性組合.

其中正確命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知城市周邊有兩個(gè)小鎮(zhèn)、,其中鄉(xiāng)鎮(zhèn)位于城市的正東方處,鄉(xiāng)鎮(zhèn)與城市相距夾角的正切值為2,為方便交通,現(xiàn)準(zhǔn)備建設(shè)一條經(jīng)過(guò)城市的公路,使鄉(xiāng)鎮(zhèn)分別位于的兩側(cè),過(guò)建設(shè)兩條垂直的公路,分別與公路交匯于兩點(diǎn),以為原點(diǎn),所在直線為軸,建立如圖所示的平面直角坐標(biāo)系.

1)當(dāng)兩個(gè)交匯點(diǎn)、重合,試確定此時(shí)路段長(zhǎng)度;

2)當(dāng),計(jì)算此時(shí)兩個(gè)交匯點(diǎn)、到城市的距離之比;

3)若要求兩個(gè)交匯點(diǎn)、的距離不超過(guò),求正切值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且,過(guò),兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為.

(1)若直線軸分別交于點(diǎn),,且的面積為,求的值;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大以來(lái),某貧困地區(qū)扶貧辦積極貫徹落實(shí)國(guó)家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過(guò)不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭(zhēng)早日脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了2018年50位農(nóng)民的年收人并制成如下頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計(jì)50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

(2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計(jì)算得.利用該正態(tài)分布,求:

(i)在2019年脫貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況, 扶貧辦隨機(jī)走訪了1000位農(nóng)民。若每個(gè)農(nóng)民的年收人相互獨(dú)立,問(wèn):這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

附:參考數(shù)據(jù)與公式,若,則①;②;③.

查看答案和解析>>

同步練習(xí)冊(cè)答案