解答題:解答應寫出文字說明,證明過程或演算步驟.

設二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足下列條件:

①當x∈R時,f(x)的最小值為0,且f(x-1)=f(-x-1)成立;

②當x∈(0,5)時,x≤f(x)≤2+1恒成立.

(1)

f(1)的值

(2)

f(x)的解析式

(3)

求最大的實數(shù)m(m>1),使得存在實數(shù)t,只要當x∈時,就有f(x+t)≤x成立.

答案:
解析:

(1)

在(2)中令x=1,有1≤f(1)≤1,故f(1)=1          3分

(2)

由(1)知二次函數(shù)的關于直線x=-1對稱,且開口向上

故設此二次函數(shù)為f(x)=a(x+1)2,(a>0),∵f(1)=1,∴a=

f(x)=(x+1)2                     4分

(3)

假設存在t∈R,只需x∈[1,m],就有f(x+t)≤x.

f(x+t)≤x(x+t+1)2≤xx2+(2t-2)x+t2+2t+1≤0.

g(x)=x2+(2t-2)x+t2+2t+1,g(x)≤0,x∈[1,m].

∴m≤1-t+2≤1-(-4)+2=9

t=-4時,對任意的x∈[1,9]

恒有g(x)≤0,∴m的最大值為9.

文科:(3)f(x+t)≤xx2+(2t-2)x+t2+2t+1≤0

g(x)=x2+(2t-2)x+t2+2t+1,g(x)≤0,x∈[1,3].

 ∴-4≤t≤-4+2

∴tmax=-4+2


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:山西省實驗中學2006-2007學年度第一學期高三年級第三次月考 數(shù)學試題 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟

(1)

(理)已知數(shù)列相鄰兩項anan+1是方程的兩根(n∈N+)且a1=2,Sn=c1+c2+…+cn,求an與S2n

(2)

(文)已知f(x)=x2-4x+3,又f(x-1),,f(x)是一個遞增等差數(shù)列{an}的前3項

(1)求此數(shù)列的通項公式

(2)求a2+a5+a8+…+a26的值.

查看答案和解析>>

科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

證明下列不等式:

(文)若xy,z∈R,a,bc∈R+,則z2≥2(xyyzzx)

(理)若xy,z∈R+,且xyzxyz,則≥2

查看答案和解析>>

科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

設f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求證:

(1)

方程f(x)=0有實根.

(2)

a>0且-2<<-1;

(3)

(理)方程f(x)=0在(0,1)內(nèi)有兩個實根.

(文)設x1,x2是方程f(x)=0的兩個實根,則

查看答案和解析>>

科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

已知函數(shù)f(x)的圖像與函數(shù)的圖像關于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;

(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

如圖,直角梯形ABCD中∠DAB=90°,ADBCAB=2,ADBC.橢圓CA、B為焦點且經(jīng)過點D

(1)建立適當坐標系,求橢圓C的方程;

(2)(文)是否存在直線l與橢圓C交于MN兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.

(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線lAB夾角的范圍,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案