已知函數(shù)f(x)=2cosxsin(x+
π
3
)-
3
sin2x+sinxcosx.
(1)求函數(shù)f(x)的最小正周期T;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,
π
3
]上的值域.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)將函數(shù)進(jìn)行化簡(jiǎn),根據(jù)三角函數(shù)的周期公式即可求函數(shù)f(x)的最小正周期T;
(2)由三角函數(shù)的單調(diào)性即可求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)根據(jù)三角函數(shù)的單調(diào)性即可求函數(shù)f(x)在區(qū)間[0,
π
3
]上的值域.
解答: 解:f(x)=2cosx(
1
2
sinx+
3
2
cosx)-
3
sin2x+sinxcosx=2sinxcosx+
3
(cos2x-sin2x)
=sin2x+
3
cos2x=2sin(2x+
π
3

(1)則函數(shù)f(x)的最小正周期T=
2
;
(2)由-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ,解得-
12
+kπ≤x≤kπ+
π
12
,k∈Z,
即函數(shù)f(x)的單調(diào)遞增區(qū)間[-
12
,kπ+
π
12
],k∈Z;
(3)若x∈[0,
π
3
],則2x+
π
3
∈[
π
3
,π],
則當(dāng)2x+
π
3
=
π
2
時(shí),函數(shù)f(x)取得最大值f(x)=2,
當(dāng)2x+
π
3
=π,函數(shù)f(x)取得最小值f(x)=2×0=0,
即函數(shù)f(x)在區(qū)間[0,
π
3
]上的值域[0,2].
點(diǎn)評(píng):本題主要考查函數(shù)的周期和單調(diào)區(qū)間和值域的求解,要求熟練掌握三角函數(shù)的圖象和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
cosx (-π≤x<0)
sinx  (0≤x≤π)

(1)若f(x)=
1
2
,求x的值;
(2)若a為常數(shù),且a∈R,試討論方程f(x)=a的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在等差數(shù)列{an}中,a1=1,a3=3求數(shù)列前6項(xiàng)的和;
(2)在等比數(shù)列{an}中,a1=1,a3=4且an>0,求a5的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
a-1
x
-lnx.
(1)當(dāng)a≤
1
2
時(shí),試討論函數(shù)f(x)的單調(diào)性;
(2)證明:對(duì)任意的n∈N+,有
ln1
1
+
ln2
2
+…+
ln(n-1)
n-1
+
lnn
n
n2
2(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象如圖(拋物線的一部份與兩條射線),求f(x)的解析式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|3x2+x-2<0,x∈R},集合B={x|
4x-3
x-3
>0,x∈R}
(1)求集合A和B;   
(2)求∁UA∩B與A∪∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在公差不為零的等差數(shù)列{an}中,a1,a2,a4成等比數(shù)列,且a1+a2+a4=7
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)求數(shù)列{
3nan
2n-1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1.
(Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在x=1處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)當(dāng)a=
1
3
時(shí),設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對(duì)于?x1∈[1,2],?x2∈[0,1],使f(x1)=g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直角坐標(biāo)平面內(nèi)兩點(diǎn)P,Q滿足條件:①都P,Q在函數(shù)y=f(x)的圖象上;②P,Q關(guān)于原點(diǎn)對(duì)稱,則稱(P,Q)是函數(shù)y=f(x)的一個(gè)“伙伴點(diǎn)組”(點(diǎn)組(P,Q)與(Q,P)看作同一個(gè)“伙伴點(diǎn)組”).已知函數(shù)f(x)=
k(x+1),  x<0
x2+1,  x≥0
有兩個(gè)“伙伴點(diǎn)組”,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案