【題目】某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x,yz,用綜合指標(biāo)Sxyz評(píng)價(jià)該產(chǎn)品的等級(jí).若S≤4, 則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號(hào)

A1

A2

A3

A4

A5

質(zhì)量指標(biāo)

(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號(hào)

A6

A7

A8

A9

A10

質(zhì)量指標(biāo)

(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;

(2)在該樣本的一等品中, 隨機(jī)抽取2件產(chǎn)品,

() 用產(chǎn)品編號(hào)列出所有可能的結(jié)果;

() 設(shè)事件B為“在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標(biāo)S都等于4求事件B發(fā)生的概率.

【答案】(1)0.6;(2)

【解析】試題分析:(1)首先將3項(xiàng)指標(biāo)相加,求出綜合指標(biāo)S.然后找出其中的產(chǎn)品,便可估計(jì)出該批產(chǎn)品的一等品率.2)(1)根據(jù)(1)題結(jié)果可知, 、、、為一等品,共6.從這6件一等品中隨機(jī)抽取2件產(chǎn)品的所有可能結(jié)果為: , , , ,共15.2)在該樣本的一等品中,綜合指標(biāo)S等于4的產(chǎn)品編號(hào)分別為、、、,則事件B發(fā)生的所有可能結(jié)果為6.由古典概型概率公式可得事件B發(fā)生的概率.

試題解析:(110件產(chǎn)品的綜合指標(biāo)S如下表所示:

產(chǎn)品編號(hào)











S

4

4

6

3

4

5

4

5

3

5

其中的有、、、、,共6件,故該樣本的一等品率為,從而可估計(jì)該批產(chǎn)品的一等品率為.

2)(1)在該樣本的一等品中,隨機(jī)抽取2件產(chǎn)品的所有可能結(jié)果為, ,共15.2)在該樣本的一等品中,綜合指標(biāo)S等于4的產(chǎn)品編號(hào)分別為、、,則事件B發(fā)生的所有可能結(jié)果為6.所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程是,雙曲線的左右焦點(diǎn)分別為的左右頂點(diǎn),而的左右頂點(diǎn)分別是的左右焦點(diǎn).

1)求雙曲線的方程;

2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn),且的兩個(gè)交點(diǎn)AB滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的二次方程px2+(p﹣1)x+p+1=0有兩個(gè)不相等的正根,且一根大于另一根的兩倍,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 為橢圓 的左、右焦點(diǎn),點(diǎn)在橢圓上,且面積的最大值為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于 兩點(diǎn), 的面積為1, , ),當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),試問是否為定值?若是定值,求出這個(gè)定值;若不是定值,求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中
①函數(shù)f(x)=( x的遞減區(qū)間是(﹣∞,+∞);
②若函數(shù)f(x)= ,則函數(shù)定義域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),曲線在點(diǎn)處的切線與直線垂直.

(Ⅰ)試比較的大小,并說明理由;

(Ⅱ)若函數(shù)有兩個(gè)不同的零點(diǎn) ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x),對(duì)任意x1 , x2∈[0,+∞)(x1≠x2),有 <0,則(
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中的奇函數(shù)是(
A.f(x)=x+1
B.f(x)=3x2﹣1
C.f(x)=2(x+1)3﹣1
D.f(x)═﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)a≠0,函數(shù)f(x)= ,若f(1﹣a)=f(1+a),則a的值為(
A.﹣
B.﹣
C.﹣ 或﹣
D.﹣1

查看答案和解析>>

同步練習(xí)冊(cè)答案