【題目】定義在R上的偶函數(shù)f(x),對(duì)任意x1 , x2∈[0,+∞)(x1≠x2),有 <0,則(
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)

【答案】A
【解析】解:由題意,∵對(duì)任意x1 , x2∈[0,+∞)(x1≠x2),有 <0,
∴函數(shù)在[0,+∞)上單調(diào)減
∴f(3)<f(2)<f(1)
∵函數(shù)是偶函數(shù),∴f(﹣2)=f(2)
∴f(3)<f(﹣2)<f(1)
故選A.
【考點(diǎn)精析】掌握奇偶性與單調(diào)性的綜合是解答本題的根本,需要知道奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知指數(shù)函數(shù)f(x)=ax(a>0,a≠1).
(1)若f(x)的圖象過(guò)點(diǎn)(1,2),求其解析式;
(2)若 ,且不等式g(x2+x)>g(3﹣x)成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】莫數(shù)學(xué)建模興趣小組測(cè)量某移動(dòng)信號(hào)塔的高度(單位: ),如圖所示,垂直放置的標(biāo)桿的高度,仰角, .

(Ⅰ)該小組已經(jīng)測(cè)得一組的值, , ,請(qǐng)推測(cè)的值;

(Ⅱ)該小組對(duì)測(cè)得的多組數(shù)據(jù)分析后,發(fā)現(xiàn)適當(dāng)調(diào)節(jié)標(biāo)桿到信號(hào)塔的距離(單位: ),使得較大時(shí),可以提高信號(hào)塔測(cè)量的精確度,若信號(hào)塔高度為,試問(wèn)為多大時(shí), 最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為xy,z,用綜合指標(biāo)Sxyz評(píng)價(jià)該產(chǎn)品的等級(jí).若S≤4, 則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號(hào)

A1

A2

A3

A4

A5

質(zhì)量指標(biāo)

(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號(hào)

A6

A7

A8

A9

A10

質(zhì)量指標(biāo)

(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;

(2)在該樣本的一等品中, 隨機(jī)抽取2件產(chǎn)品,

() 用產(chǎn)品編號(hào)列出所有可能的結(jié)果;

() 設(shè)事件B為“在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標(biāo)S都等于4, 求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 畫出函數(shù)g(x)圖象;
(3)求函數(shù)g(x)在[﹣3,1]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=ax3+bx+ +2,滿足f(﹣3)=﹣2015,則f(3)的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,
(1)求實(shí)數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù);
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達(dá)式并判斷其奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線)與橢圓相交于,兩個(gè)不同的點(diǎn),與軸相交于點(diǎn),記為坐標(biāo)原點(diǎn).

(1)證明:

(2)若,求的面積取得最大值時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.

1求橢圓的方程;

2過(guò)點(diǎn)的直線,交橢圓兩點(diǎn),點(diǎn)在橢圓上,坐標(biāo)原點(diǎn)恰為的重心,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案