(本題滿分12分)已知函數(shù),
(1)判斷函數(shù)的單調(diào)性,并用定義加以證明;(2)求函數(shù)的最大值和最小值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)已知函數(shù)
⑴ 判斷函數(shù)的單調(diào)性,并利用單調(diào)性定義證明;
⑵ 求函數(shù)的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=是定義在(-1,1)上的奇函數(shù),且f()=.
(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) . (1) 求函數(shù)的定義域;(2) 求證上是減函數(shù);(3) 求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)設(shè)函數(shù)
(1)求它的定義域;(2)判斷它的奇偶性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)集合A是由具備下列性質(zhì)的函數(shù)f(x)組成的:
①函數(shù)f(x)的定義域是[0,+∞);
②函數(shù)f(x)的值域是[-2,4);
③函數(shù)f(x)在[0,+∞)上是增函數(shù),試分別探究下列兩小題:
(1)判斷函數(shù)f1(x)=-2(x≥0)及f2(x)=4-6·x(x≥0)是否屬于集合A?并簡(jiǎn)要說(shuō)明理由;
(2)對(duì)于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對(duì)于任意的x≥0恒成立?若不成立,為什么?若成立,請(qǐng)說(shuō)明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)為偶函數(shù),集合A=為單元素集合
(I)求的解析式
(II)設(shè)函數(shù),若函數(shù)上單調(diào),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,則      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,互相垂直的兩條公路、旁有一矩形花園,現(xiàn)欲將其擴(kuò)建成一個(gè)更大的三角形花園,要求在射線上,在射線上,且過(guò)點(diǎn),其中米,米. 記三角形花園的面積為.
(1)設(shè)米,將表示成的函數(shù).
(2)當(dāng)的長(zhǎng)度是多少時(shí),最小?并求的最小值.
(3)要使不小于平方米,則的長(zhǎng)應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

同步練習(xí)冊(cè)答案