【題目】已知函數(shù).

(1)對(duì)恒成立,求實(shí)數(shù)的取值范圍;

(2)是否存在整數(shù),使得函數(shù)在區(qū)間上存在極小值,若存在,求出所有整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)存在整數(shù)使得函數(shù)在區(qū)間上存在極小值.

【解析】

試題分析:(1)由,設(shè),則,利用導(dǎo)數(shù)工具求得,原命題可轉(zhuǎn)化為對(duì)恒成立的取值范圍為;(2)易得,利用分類(lèi)討論思想對(duì)、分三種情況可得:存在整數(shù),使得函數(shù)在區(qū)間上存在極小值.

試題解析:(1)由,

設(shè),則

,,則上是減函數(shù),

對(duì)恒成立,即對(duì)恒成立,

,則實(shí)數(shù)的取值范圍為.

(2)

,

當(dāng)時(shí),,單調(diào)遞增,無(wú)極值.

當(dāng)時(shí),若,或,則;若,則.

當(dāng)時(shí),有極小值.

上有極小值,.存在整數(shù).

當(dāng)時(shí),若,則;若,則.

當(dāng)時(shí),有極小值.

上有極小值,

,得.

①②③得,存在整數(shù),使得函數(shù)在區(qū)間上存在極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有紅、白兩種顏色的小球共7個(gè),它們除顏色外完全相同,從中任取2個(gè),都是白色小球的概率為,甲、乙兩人不放回地從袋中輪流摸取一個(gè)小球,甲先取,乙后取,然后再甲取……,直到兩人中有一人取到白球時(shí)游戲停止,用X表示游戲停止時(shí)兩人共取小球的個(gè)數(shù)。

(1)求;

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,圓,點(diǎn)為拋物線上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),線段的中點(diǎn)的軌跡為曲線.

(1)求拋物線的方程;

(2)點(diǎn)是曲線上的點(diǎn),過(guò)點(diǎn)作圓的兩條切線,分別與軸交于兩點(diǎn).

面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少燃?xì)饣蛉济海,采用分段?jì)費(fèi)的方法計(jì)算:電費(fèi)每月用電不超過(guò)100度時(shí),按每度0.57元計(jì)算;每月用電量超過(guò)100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過(guò)的部分每度按0.5元計(jì)算.

(Ⅰ)設(shè)月用電度時(shí),應(yīng)交電費(fèi)元,寫(xiě)出關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)小明家第一季度繳納電費(fèi)情況如下:

月份

一月

二月

三月

合計(jì)

交費(fèi)金額

76元

63元

45.6元

184.6元

問(wèn)小明家第一季度共用電多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若對(duì)恒成立,求實(shí)數(shù)的取值范圍;

(2)是否存在整數(shù),使得函數(shù)在區(qū)間上存在極小值,若存在,求出所有整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)用支出與銷(xiāo)售額之間有如下的對(duì)應(yīng)數(shù)據(jù):

2

4

5

6

8

30

40

60

50

70

(1)畫(huà)出散點(diǎn)圖;并說(shuō)明銷(xiāo)售額y與廣告費(fèi)用支出x之間是正相關(guān)還是負(fù)相關(guān)?

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求回歸直線方程;

(3)據(jù)此估計(jì)廣告費(fèi)用為10時(shí),銷(xiāo)售收入的值.

(參考公式:,).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),令,其中是函數(shù)的導(dǎo)函數(shù).

(Ⅰ)當(dāng)時(shí),求的極值;

(Ⅱ)當(dāng)時(shí),若存在,使得恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)在頸椎病患者越來(lái)越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機(jī)構(gòu)為了了解大學(xué)生患有頸椎病是否與長(zhǎng)期過(guò)度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機(jī)的對(duì)入院的50名大學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到了如下的4×4列聯(lián)表:

未過(guò)度使用

過(guò)度使用

合計(jì)

未患頸椎病

15

5

20

患頸椎病

10

20

30

合計(jì)

25

25

50

(1)是否有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長(zhǎng)期過(guò)度使用電子產(chǎn)品有關(guān)?

(2)已知在患有頸錐病的10名未過(guò)度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進(jìn)行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù)與公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若函數(shù)的圖象在點(diǎn)處的切線平行于直線,求的值;

(2)討論函數(shù)在定義域上的單調(diào)性;

3)若函數(shù)上的最小值為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案