【題目】已知次多項式.如果在一種算法中,計算的值共需要次乘法,計算的值共需要9次運算(6次乘法,3次加法),那么計算的值共需要______次運算.下面給出一種減少運算次數(shù)的算法:.利用該算法,計算的值共需要6次運算,計算的值共需要______次運算;
科目:高中數(shù)學 來源: 題型:
【題目】 在平行四邊形ABCD中,A(1,1),=(6,0),點M是線段AB的中點,線段CM與BD交于點P.(1) 若=(3,5),求點C的坐標;(2) 當||=||時,求點P的軌跡.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知常數(shù),向量,,經(jīng)過定點且以為方向向量的直線與經(jīng)過定點且以為方向向量的直線交于點,其中.
(1)求點的軌跡的方程;
(2)若,過的直線交曲線于,兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】A,B兩組各有7位病人,他們服用某種藥物后的康復時間(單位:天)記錄如下:
A組:10,11,12,13,14,15,16;
B組:12,13,15,16,17,14,.
假設所有病人的康復時間相互獨立,從A,B兩組隨機各選1人,A組選出的人記為甲,B組選出的人記為乙.
(1)求甲的康復時間不少于14天的概率;
(2)如果,求甲的康復時間比乙的康復時間長的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司對旗下的甲、乙兩個門店在1至9月份的營業(yè)額(單位:萬元)進行統(tǒng)計并得到如圖折線圖.
下面關于兩個門店營業(yè)額的分析中,錯誤的是( )
A.甲門店的營業(yè)額折線圖具有較好的對稱性,故而營業(yè)額的平均值約為32萬元
B.根據(jù)甲門店的營業(yè)額折線圖可知,該門店營業(yè)額的平均值在[20,25]內(nèi)
C.根據(jù)乙門店的營業(yè)額折線圖可知,其營業(yè)額總體是上升趨勢
D.乙門店在這9個月份中的營業(yè)額的極差為25萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(3’+7’+8’)已知以a1為首項的數(shù)列{an}滿足:an+1=.
(1)當a1=1,c=1,d=3時,求數(shù)列{an}的通項公式;
(2)當0<a1<1,c=1,d=3時,試用a1表示數(shù)列{an}的前100項的和S100;
(3)當0<a1<(m是正整數(shù)),c=,d≥3m時,求證:數(shù)列a2-,a3m+2-,a6m+2-,a9m+2-成等比數(shù)列當且僅當d=3m.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,網(wǎng)絡電商已經(jīng)悄然進入了廣大市民的日常生活,并慢慢改變了人們的消費方式為了更好地服務民眾,某電商在其官方APP中設置了用戶評價反饋系統(tǒng),以了解用戶對商品狀況和優(yōu)惠活動的評價現(xiàn)從評價系統(tǒng)中隨機抽出200條較為詳細的評價信息進行統(tǒng)計,商品狀況和優(yōu)惠活動評價的2×2列聯(lián)表如下:
對優(yōu)惠活動好評 | 對優(yōu)惠活動不滿意 | 合計 | |
對商品狀況好評 | 100 | 20 | 120 |
對商品狀況不滿意 | 50 | 30 | 80 |
合計 | 150 | 50 | 200 |
(I)能否在犯錯誤的概率不超過0.001的前提下認為優(yōu)惠活動好評與商品狀況好評之間有關系?
(Ⅱ)為了回饋用戶,公司通過APP向用戶隨機派送每張面額為0元,1元,2元的三種優(yōu)惠券用戶每次使用APP購物后,都可獲得一張優(yōu)惠券,且購物一次獲得1元優(yōu)惠券,2元優(yōu)惠券的概率分別是,,各次獲取優(yōu)惠券的結果相互獨立若某用戶一天使用了APP購物兩次,記該用戶當天獲得的優(yōu)惠券面額之和為X,求隨機變量X的分布列和數(shù)學期望.
參考數(shù)據(jù)
P(K2≥k) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2,其中n=a+b+c+d
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,E是棱AB的中點,動點F是側面ACC1A1(包括邊界)上一點,若EF//平面BCC1B1,則動點F的軌跡是( )
A.線段B.圓弧
C.橢圓的一部分D.拋物線的一部分
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的焦點在軸上.
(1)若橢圓的焦距為1,求橢圓的方程;
(2)設分別是橢圓的左、右焦點,為橢圓上的第一象限內(nèi)的點,直線交軸與點,并且,證明:當變化時,點在某定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com