【題目】(3’+7’+8’)已知以a1為首項(xiàng)的數(shù)列{an}滿足:an+1=.
(1)當(dāng)a1=1,c=1,d=3時,求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)0<a1<1,c=1,d=3時,試用a1表示數(shù)列{an}的前100項(xiàng)的和S100;
(3)當(dāng)0<a1<(m是正整數(shù)),c=,d≥3m時,求證:數(shù)列a2-,a3m+2-,a6m+2-,a9m+2-成等比數(shù)列當(dāng)且僅當(dāng)d=3m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對旗下的甲、乙兩個門店在1至9月份的營業(yè)額(單位:萬元)進(jìn)行統(tǒng)計(jì)并得到如圖折線圖.
下面關(guān)于兩個門店?duì)I業(yè)額的分析中,錯誤的是( )
A.甲門店的營業(yè)額折線圖具有較好的對稱性,故而營業(yè)額的平均值約為32萬元
B.根據(jù)甲門店的營業(yè)額折線圖可知,該門店?duì)I業(yè)額的平均值在[20,25]內(nèi)
C.根據(jù)乙門店的營業(yè)額折線圖可知,其營業(yè)額總體是上升趨勢
D.乙門店在這9個月份中的營業(yè)額的極差為25萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.
(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(2)求這三個人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩城市和相距,現(xiàn)計(jì)劃在兩城市外以為直徑的半圓上選擇一點(diǎn)建造垃圾處理場,其對城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對城和城的總影響度為城和城的影響度之和,記點(diǎn)到城的距離為,建在處的垃圾處理場對城和城的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理場對城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為4,對城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為,當(dāng)垃圾處理場建在的中點(diǎn)時,對城和城的總影響度為0.065;
(1)將表示成的函數(shù);
(2)判斷上是否存在一點(diǎn),使建在此處的垃圾處理場對城和城的總影響度最小?若存在,求出該點(diǎn)到城的距離;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知次多項(xiàng)式.如果在一種算法中,計(jì)算的值共需要次乘法,計(jì)算的值共需要9次運(yùn)算(6次乘法,3次加法),那么計(jì)算的值共需要______次運(yùn)算.下面給出一種減少運(yùn)算次數(shù)的算法:.利用該算法,計(jì)算的值共需要6次運(yùn)算,計(jì)算的值共需要______次運(yùn)算;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)為平面直角坐標(biāo)系的坐標(biāo)原點(diǎn),焦點(diǎn)為圓的圓心.經(jīng)過點(diǎn)的直線交拋物線于兩點(diǎn),交圓于兩點(diǎn),在第一象限,在第四象限.
(1)求拋物線的方程;
(2)是否存在直線使是與的等差中項(xiàng)?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),關(guān)于函數(shù)有下列結(jié)論:
①,;
②函數(shù)的圖象是中心對稱圖形,且對稱中心是;
③若是的極大值點(diǎn),則在區(qū)間單調(diào)遞減;
④若是的極小值點(diǎn),且,則有且僅有一個零點(diǎn).
其中正確的結(jié)論有________(填寫出所有正確結(jié)論的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)若斜率為的直線與橢圓交于不同的兩點(diǎn),,且線段的垂直平分線過點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知曲線,曲線,P是平面上一點(diǎn),若存在過點(diǎn)P的直線與都有公共點(diǎn),則稱P為“C1—C2型點(diǎn)”.
(1)在正確證明的左焦點(diǎn)是“C1—C2型點(diǎn)”時,要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線與有公共點(diǎn),求證,進(jìn)而證明原點(diǎn)不是“C1—C2型點(diǎn)”;
(3)求證:圓內(nèi)的點(diǎn)都不是“C1—C2型點(diǎn)”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com