(2006•上海)拋物線y2=4x的焦點坐標為( �。�
分析:確定拋物線的焦點位置,進而可確定拋物線的焦點坐標.
解答:解:拋物線y2=4x的焦點在x軸上,且p=2
p
2
=1
∴拋物線y2=4x的焦點坐標為(1,0)
故選B.
點評:本題考查拋物線的性質(zhì),解題的關(guān)鍵是定型定位,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2006•上海模擬)設(shè)f(x)是R上的奇函數(shù),對任意實數(shù)x都有f(x+2)=-f(x),當-1≤x≤1時,f(x)=x3
(1)求證:x=1是函數(shù)f(x)的一條對稱軸
(2)證明函數(shù)f(x)是以4為周期的函數(shù),并求x∈[1,5]時,f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

(2006上海春,20)如圖所示,學校科技小組在計算機上模擬航天器變軌返回試驗,設(shè)計方案如圖:航天器運行(按順時針方向)的軌跡方程為,變軌(即航天器運行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為對稱軸、為頂點的拋物線的實線部分,降落點為D(80),觀測點A(4,0)、B(60)同時跟蹤航天器.

(1)求航天器變軌后的運行軌跡所在的曲線方程;

(2)試問:當航天器在x軸上方時,觀測點A、B測得離航天器的距離分別為多少時,應向航天器發(fā)出變軌指令?

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�