5.等比數(shù)列{an}中,an>0,a1和a99為方程x2-10x+16=0的兩根,則a20•a50•a80的值為64.

分析 由已知求得a1•a99=16,結(jié)合an>0,求得a50=4,則答案可求.

解答 解:∵a1和a99為方程x2-10x+16=0的兩根,
∴a1•a99=16,
又an>0,∴a50=4,
則a20•a50•a80=(a1•a99)a50=16×4=64.
故答案為:64.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知下列命題:
(1)“cosx<0”是“tanx<0”的充分不必要條件;
(2)命題“存在x∈Z,4x+1是奇數(shù)”的否定是“任意x∈Z,4x+1不是奇數(shù)”;
(3)已知a,b,c∈R,若ac2>bc2,則a>b.
其中正確命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=m-$\frac{2}{{2}^{x}+1}$,(m∈R).
(1)試判斷f(x)的單調(diào)性,并證明你的結(jié)論;
(2)是否存在實(shí)數(shù)m使函數(shù)f(x)為奇函數(shù)?
(3)對(duì)于(2)中的函數(shù)f(x),若f(t+1)+f(t)≥0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=(x+2)e-x-2(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…).
(Ⅰ) 當(dāng)x>0時(shí),求f(x)的解析式;
(Ⅱ) 若x∈[0,2]時(shí),方程f(x)=m有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)y=$\sqrt{a{x}^{2}-2ax+3}$定義域?yàn)閷?shí)數(shù)集R,則實(shí)數(shù)a的取值范圍是[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)f(x)=ax5+bx3+cx+7(其中a,b,c為常數(shù),x∈R),若f(-2011)=-17,則f(2011)=31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知拋物線y2=6x,定點(diǎn)A(2,3),F(xiàn)為焦點(diǎn),P為拋物線上的動(dòng)點(diǎn),則|PF|+|PA|的最小值為( 。
A.5B.4.5C.3.5D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.拋物線C:y2=16x,C與直線l:y=x-4交于A,B兩點(diǎn),則AB中點(diǎn)到y(tǒng)軸距離為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知A,B,C是長(zhǎng)軸為4的橢圓E上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的
一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且$\overrightarrow{AC}•\overrightarrow{BC}$=O,|BC|=2|AC|
(1)求橢圓E的方程. 
(2)設(shè)圓O是以原點(diǎn)為圓心,短軸長(zhǎng)為半徑的園,過(guò)橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作圓O的兩條切線,切點(diǎn)為M,N,若直線MN在x軸,Y軸上的截距分別為m,n,試計(jì)算$\frac{1}{{3{m^2}}}+\frac{1}{n^2}$的值是否為定值?如果,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案