分析 (I)由等邊三角形知識(shí)得AO⊥BE,利用面面垂直的性質(zhì)得出AO⊥平面BCDE,故而AO⊥CD;
(II)連結(jié)BD,由菱形性質(zhì)得出CE⊥BD,又AO⊥平面BCDE,故AO⊥CE,由中位線性質(zhì)得BD∥EF,故而CE⊥平面AOF,所以平面AOF⊥平面ACE.
解答 證明:(Ⅰ)因?yàn)椤鰽BE 為等邊三角形,O 為BE 的中點(diǎn),
所以AO⊥BE.又因?yàn)槠矫鍭BE⊥平面BCDE,平面ABE∩平面BCDE=BE,AO?平面ABE,
所以AO⊥平面BCDE.又因?yàn)镃D?平面BCDE,
所以AO⊥CD.
(Ⅱ)連結(jié)BD,因?yàn)樗倪呅蜝CDE 為菱形,
所以CE⊥BD.
因?yàn)镺,F(xiàn) 分別為BE,DE 的中點(diǎn),
所以O(shè)F∥BD,所以CE⊥OF.
由(Ⅰ)可知,AO⊥平面BCDE.
因?yàn)镃E?平面BCDE,所以AO⊥CE.
因?yàn)锳O∩OF=O,所以CE⊥平面AOF.
又因?yàn)镃E?平面ACE,
所以平面AOF⊥平面ACE.
點(diǎn)評(píng) 本題考查了線面垂直,面面垂直的判定,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,0) | B. | (-2,-3) | C. | (0,1) | D. | (-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com